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REPORT 1217

THEORETICAL PREDICTION OF PRESSURE DISTRIBUTIONS ON NONLIFTING AIRFOILS AT
HIGH SUBSONIC SPEEDS*

By JOHN R. SPREITER and ALBERTA ALKSNE

SUMMARY

Theoretical pressure distributions on nonlifting circular-arc
airfoils in two-dimensional flows with high subsonic free-stream
velocity are found by determining approzimate solutions, through
an ieration process, of an integral equation for transonic flow
proposed by Oswatitsch. The integral equation stems directly
from the small-disturbance theory for transonic flow. This
method of analysis possesses the advantage of remaining in the
physical, rather than the hodograph, variables and can be applied
to airfoils having curved surfaces. After discussion of the deriva-
tion of the integral equation and qualitative aspects of the solu-
tion, results of calculations carried out for circular-arc airfoils in
Jlows with free-stream Mach numbers up to unity are described.
These results indicate most of the principal phenomena observed
in experimental studies. At subcritical Mach numbers, the pres-
sure distribuiion is symmetrical about the midchord position and
the drag 18 zero. The magnitude of the pressure coefficient is
found to increase more rapidly with increasing Mach number
than the Prandtl-GQlauert rule would indicate. When the critical
Mach number is exceeded, compression shocks occur, the fore-
and-aft symmetry of the pressure distribution is lost, and the air-
Jfoil experiences a drag force. As the Mach number 18 increased
Jurther, the shock wave becomes of greater intensity and moves
rearward along the chord, thereby producing a rapid increase in
the magnitude of the pressure drag coefficient. At Mach num-
bers close to unity, the variation of the pressure, local Mach
number, and drag conforms, within the limitations of transonic
small perturbation theory, to the known trends associated with
the Mach number freeze. Some comparisons with experimental
results are also included.

The solutions are oblained using an iteration process which
differs from the classical methods in that the quadratic nature
of the integral equation is recognized. If the iteration caleula-
lions are started using the linear-theory solution, it is shown that
the retention of the quadratic feature has the interesting effect of
Jorbidding shock-free supercritical second-order solutions. In
order to oblain solutions for supercritical Mach numbers, it i3
necessary lo start the iteration calculations with a velocity or
pressure distribution which contains a compression shock. When
this 18 done, it 18 found that the iteration procedure converges to
a definite result.

1 Bupersedes NACA TN 3096 by John R. Sprefter and Alberta Alkane, March 1054,

INTRODUCTION

The theoretical problem of transonic flow about thin
wings has been discussed by numerous authors in recent
years. Since the basic equations are nonlinear and of mixed
type, the difficulties are great, and progress has been made
only through expenditure of considerable effort. At first,
only the basic equations and the similarity rules were estab-
lished. (See refs. 1 through 12.) More recently, & small
number of actual solutions have been determined. At the
present time, the most complete theoretical results are those
of Guderley and Yoshihara, Vincenti and Wagoner, Cole, and
Trilling (refs. 13 through 18) for the flow about wedge air-
foils at both subsonic and supersonic speeds. These were
all obtained by transforming the equations to hodograph
variables whereby the differential equation becomes linear
although still of mixed type. Superposition of solutions is
then possible, but the boundary conditions generally become
very complicated. It is because of the latter difficulty that
all the solutions mentioned above are for wedge sections.
A further disadvantage of the hodograph method is that
it is definitely restricted to two-dimensional flows, there
being no known transformation which linearizes the equa-
tion for three-dimensional compressible flows.

If the hodograph transformation is not introduced, there
are available no direct methods of solution. Howevaer,
various iteration methods have been used to study flows
with high subsonic free-stream velocities. (See ref. 19 for
a résumé.) Almost all these account for the compressibility
effects by source distributions throughout the flow field and
start with either the solution for incompressible flow or for
linearized compressible flow as the first approximation. A
second approximsation is calculated from the first and so on.
It was not found possible, however, to iterate starting with
8 typical shock-free subsonic flow solution and obtain a
typical transonic flow field in which the supersonic region
ends with a shock.

Oswatitsch has presented another method in references
20 and 21 for determining the transonic pressure distribution
on thin airfoils in flows with subsonic free-stream velocity.
The analysis is carried out in the physical rather than the
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hodograph variables, and leads to a nonlinear integral equa-
tion in which the unknown velocity appears outside as well
as inside the integral. Oswatitsch finds approximate solu-
tions not by iteration, but by introducing various functions
containing undetermined parameters into the integral equa-
tion and by determining the parameters so that the integral
equation is satisfied at a small number of points on the air-
foil. The method is applied to determine the pressure dis-
tribution on circular-arc and NACA symmetrical four-digit
airfoils. The results show certain characteristics of transonic
flow such as the appearance of shock waves and their rearward
movement across the chord with increasing Mach number.
It is disconcerting, however, that the method fails to give
proper results at high subsonic Mach numbers (greater than
about 0.88 for 6-percent-thick circular-arc sections), pro-
vides a.multiplicity. of-solutions at supercritical Mach num-
bers, and permits the integral equation to be satisfied at
only a very limited number of points.

The present work is based on the integral equation of
Oswatitsch but an iteration process is used to obtain approx-
imate solutions. This procedure permits the integral equa-
tion to be satisfied at & much larger number of points than
in the original method of Oswatitech, gives approximate
solutions at all Mach numbers up to unity, and appears to
avoid any multiplicity of solutions. The method is applied
to determine the theoretical pressure distribution on sym-
metrical circular-arc airfoils at zero angle of attack. Except
for phenomena that are primarily of viscous origin, such as
boundary-layer separation, etc., these results exhibit most
of the experimentally observed features of transonic flows.

Attention is also called to reference 22 by Gullstrand, an
associate of Oswatitsch, in which transonic flows about thin
air foils are investigated by still another extension of Oswa-
titsch’s integral-equation theory. Gullstrand sought to
determine approximate solutions by iteration, although his
procedure differs considerably from that described herein.
His method, however, succeeded in determining solutions
only when the Mach number was less than about 0.90 for
6-percent-thick sections. Results were given-for the pressure
distribution at sonic speed in a second paper by Gullstrand
(vef. 23), but they were obtained by introducing a new and
more complicated integral equation than that of Oswatitsch
used herein. In contrast to the present analysis in which
the entire solution is obtained from the integral equation,
Gullstrand uses the integral equation to determine only the
solution for the forward part of the airfoil and uses the
method of characteristics to complete the solution for the
rear of the airfoil. Further work of Gu]lstrand is presented
in references 24 and 25.

A list of symbols is contained in Appendlx A

~ BASIC EQUATIONS

The basic equations necessary for the discussion of inviscid
transonic flow consist of & set of partial differential equations
relating the velocity components and their gradients at every
point, together with the auxiliary relation giving the velocity
jump through a shock wave For thin airfoils inclined at
zero or small angles of attack, the differential equations can
be simplified by assuming that the shock waves are sufficient-

REPORT 1217—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ly weak that the flow is irrotational and isentropic, thereby
permitting the introduction of a velocity potential ® The
quasi-linear partial differential equation satisfied by & can
be expressed in the form

(‘1'2_'@:2) &+ (ax__q>'2) (bﬂ_l' (az_ 32) D —
20,8,y — 25,B,B,—28,B:5=0 (1)

where the subseript notation is used to indicate differentiation
and a is the local speed of sound given by the relation

a2=a02_'Y_2]. ((I)f—'—d)f—l—@"—UJ) (2)
In this latter equation U, and a, are, respectively, the froe-
stream velocity and the speed of sound in the free stream,
and v is the ratio of specific heats (for air, y=1.4).
It is convenient to introduce the perturbation velocity
potential o, where

p=—Ug+® (3)

If it is assumed that all perturbation velocities and pertur-
bation velocity gradients (represented by first and second
derivatives, respectively, of ¢) are small and that only the
first-order terms in small quantities need be retained, equa-
tion (1) simplifies to the well-known Prandtl-Glauert equa-
tion of linear theory

(=MD st oyt 0=0 4)

where the free-stream velocity is directed along the positive
z axis as shown in figure 1 and where M,=U,/a, is the Mach
number of the free stream. It is well known that equation
(4) leads to useful results in the study of subsonic and super-
sonic flow about thin wings and slender bodies but that it is
incapable, in general, of treating transonic floes. The failure
of linear theory in the transonic range is evidenced by the
calculated values of ¢, growing to such magnitude that they
can no longer be regarded as small quantities when compared
with U,.

Frgore 1.—View of wing and coordinate system.
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Second-order theory for thin wings would involve solution
of the equation

=) ot o= | 2 et 7 ediomt v+
5 Gospartoeed | ®

(Seoref. 26, p. 140.) Actually, we are interested in retaining
higher-order terms only to the extent that is necessary to
allow the study of transonic flow. Examination of the known
properties of transonic flow fields indicates that the first
term on the right can often become of importance and should
be retained. It is assumed in the small-disturbance theory
of transonic flow (refs. 1 through 25), however, that the re-
mainder of the terms on the right can be safely disregarded.
The simplified equation is

(1 —Mog) o S o Zilr_o_l Prprr=R o0z ©)
where

YT Ra!
k-—Ma —Uo— (7)
As a result of minor differences in the perturbation analysis,
recent papers have used at least three other expressions for
k. 'This point will be discussed further at the conclusion of
the present section.

Equation (6) is valid only in regions where the necessary
derivatives exist and are continuous. Since these conditions
do not hold where shock waves occur, an additional equation
is needed for the transition through the shock. The neces-
sary equation is provided by the classical relation for the
shock polar (e. g., ref. 26, p. 108).

ﬂ,a'llb—a,“

2 40
maa gty +a*

B2y =l —)*

®)

where %, v, and @ refer to Cartesian velocity components
with % being parallel to the flow direction ahead of the shock,
the subscripts @ and b refer to conditions ahead of and behind
the shock, and a* is the critical sound velocity, which can be
oxpressed in terms of U, and M, as follows:

e e R ©)
U, Vv+1"M2(v+1)
The appropriate simplified equation is obtained from equa-
tion (8) by resolving the velocities into components parallel
to the axes of the coordinate system and carrying out & small-
perturbation analysis analogous to that performed in the
derivation of equation (6). In this way, the following re-

lation is found between the perturbation velocity components
on the two sides of the shock wave:

(1—DM,D) (s —%e)*+ (0a—0)*+ (w—wy)*
=M} 1{-}_1—}(%__—!2—%)(%_%),=k (u”-———;u” (Ua—10s)?
(10)

where u, v, and w are the perturbation velocity components
parallel to the 2, y, and 2 axes. This equation corresponds
to the shock-polar curve for shock waves of small strength
inclined at any angle between that of normal shock waves
and that of the Mach lines. On either side of the shock
wave, the perturbation velocity components are related to
the perturbation velocity potential in the usual manner

Qe Qo ¢
u—&-: v—ay: ’w—az (11)

In addition to satisfying the differential equation and the
shock-wave equation, the perturbation potential must pro-
vide flows compatible with the following physical require-
ments: (a) the perturbation velocities must vanish far
ahead of the wing and (b) the flow must be tangential to the
wing surface. Therefore, the following boundary conditions
are to be specified for the perturbation potential:

at z=— o
%0 _ @) _<?_'P -
bx)o (by o_ 0z 0 0 (12)
at the wing surface W
7(59),~% (13)

where 0Z/0z is the local slope of the wing surface in the z
direction. Furthermors, it is consistent with the assumption
of small disturbances to satisfy the second boundary condi-
tion on the two sides of the zy plane rather than on the actual
wing surface. Kquation (13) thus becomes

126\ 1 (%) _9Z_ > .(xy
U, bz)W“Uo bz),-o—ba;_T b(:c/c)f<?3 (14)

where the shape of the wing profile is given by

Zs(e)

In addition, it is presumed necessary to prescribe that the
direct influence of a disturbance in the supersonic region
proceeds only in the downstream direction and that the Kutta,
condition applies whenever the flow velocity at the trailing
edge is subsonic.

Upon solving the above boundary-value problem for the
potential, one may determine the pressure coefficient for
planar systems by means of the formula

P—P. 2 _ZE
C,= Py AT (16)
2 o

COMPARISON WITH OTHER STATEMENTS OF THE
TRANSONIC-FLOW EQUATIONS

As aresult of minor variations in the perturbation analysis,
recent papers have used at least four different relations for %,
the coefficient of the nonlinear term in the simplified equation
for the perturbation velocity potential. As indicated in the
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preceding paragraphs, straightforward development of
second-order theory leads to the relation

vl
=M o)

This is sometimes simplified (e. g., refs. 8, 10, and 12) to

c o7l
k= T, (17)

by arguing that A/, can be set equal to unity in this term
without any loss in accuracy since the right-hand side of
equation (6) is merely an approximation to allow the treat-
ment of transonic flows and rapidly diminishes in magnitude
as M, departs from unity. In some treatments (e. g., refs.
7 and 23), equation (1) is divided by a® and the quotient
1/a? in each term is expanded in a binomial series. When
this is done, the coefficient &k of the term involving ¢.p. is

k=13 [z—ﬂg}”—M’] 18

Still another expression for % is used by Oswatitsch in the
papers that form the principal references for the present work.
Two derivations are given, one based on mass-flow consider-
ations (ref. 21) and the other (ref. 20) on simplifyingsequation
(1) under the assumption of nearly parallel flow to

A—M* or+ oyt 0::=0 (19)

and substituting the following series for the variable coeffi-
cient (1—2L%):

__Af2
1—ﬂP=1—M02—;—_—D‘&g%|- ‘e (20)

where M is the local Mach number and a* is the critical
sound velocity as defined in equation (9). Comparison of
equations (19) and (20) with equation (6) shows that the
coefficient % in this approximation is

P 1 1)

_a'*_Uo

A similar situation arises in the derivation of the simplified
equation for the shock polar. Here again the precise form
of the expression for the coefficient £ of equation (10) depends
on the details of the perturbation analysis. The most
important point from the present point of view is that the
same expression for % is used in both the equation for the
potential and that for the shock polar, namely, equations
(6) and (10). While this point has not always been explicitly
stated, it is actually a necessary condition for the existence
of the well-known transonic similarity rules.

The foregoing discussion has been based on equations
obtained by assuming that the local velocities are only
slightly different from the free-stream velocity. On the
other hand, many of the recent papers on transonic flow
about wings and bodies have been based on equations ob-
tained by assuming that the local velocities are only slightly
different from the critical sound velocity a*. (See refs. 1

REPORT 1217—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

through 6, 9, and 13 through 18.) It is shown in reference
12, however, that the pressure, force, and moment results
obtained using these equations are identical with those
obtained using the present equations if % is selected as given
in equation (17). These results, however, can be ecasily
converted to those that would be obtained using any of the
other expressions for & by simply replacing (v+1)/U, by %
wherever it occurs.

In order to facilitate comparison with previous results and
to achieve an economy of notation, the present analysis is
carried as far as possible without specifying a particular
relation for k. That is, the equations of the analysis and the
reduced parameters with which the results are expressed are
written containing % which may be equated to any of the
four stated expressions. However, the actual values of the
pressure coefficient and Mach number for an airfoil of specific
thickness ratio depend on which relation is selected for %.
The present calculations have been made using the expression
for k given in equation (7). The principal reason for this
choice is that it appears to provide a set of equations, or a
mathematical model, which approximates certain essential
features of transonic flow with superior accuracy. Before
proceeding with discussion of this point, it should be noted
that the four alternative expressions for k are identical for
M,=1, and all but that given by equation (17) are zero for
M,=0.

A significant case where the four relations lead to different
results is the prediction of the variation with free-stream
Mach number of the critical pressure coefficient C;_, dofined

as the value of the pressure coefficient (, at a point where
the local Mach number is unity. It is important that a
reasonably good approximation be maintained for the varia-
tion of O, with M, because shock waves make their first

appearance and the airfoil first experinces a pressure drag
when O, becomes more negative than C, somewhere on the

airfoil surface. In the present approximation, C,,, corre-

sponds to that value of C, and, hence, of ¢;, at which equa-
tion (6) changes locally from elliptic to hyperbolic type.
This condition is recognized by the vanishing of the coefficient
of ., thus

I—Moz_k(ioz)cr:()

or, in view of equation (16)
2 2
0%.-:_0—'0 (Sox)cr_"—m 1 —Moﬂ) (22)

The exact relation for isentropic flow is (e. g., ref. 27, p. 28)

”
2 2 v—1, N\ ]
0”"—'YM,,’ [<7+1+7+1 M, 1 (23)

The variation of C,,, with I, has been computed using the
exact relation and each of the four approximate relations.
The results are presented graphically in figure 2. It may
be seen that a reasonably good approximation for O, is
obtained over & wide Mach number range when % is taken
as Mo*(v+1)/U, or (1—M5/(a*—U,), and that a& some-
what greater error is incurred when £ is equated to M2+
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Freure 2—Variation, approximate and exact, of critical pressure
coefficient with free-stream Mach number.

(v—1MA/U, On the other hand, a very poor approxi-
mation results if % is equated to (v+1)/U.,.

Similar comparisons can be made for local Mach numbers
M other than unity by noting that the coefficient (1—
MA2—ke,) of ¢ in equation (6) corresponds, in the present
approximation, to 1—A? thus,

kU

1'_'M2=1_M02'—k¢:=1_M’+ 2 2 Op (24)

The corresponding exact relation for isentropic flow is

Y

Y—1 4,0 )1
9 1+ 5 M,

Op=m§ —-] +

—_— 25
1+7—;—1- M

The results so obtained are generally similar to those indi-
cated in Tigure 2 although the relative accuracy of the
better approximations changes somewhat with the situation.
All the approximations are exact, of course, when (,=O.
On the other hand, none of the approximations are exact,
except for isolated cases, when C, is different from zero,
even though all of the approximations agree among them-
selves when the free-stream Mach number is unity. In
order to provide some information regarding the errors that
are likely to be incurred when O, is not very small, figure 3
has been prepared illustrating the variation of local Mach

14
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Figurs 3.—Variation, approximate and exaet, of local Mach number
with pressure coefficient, M,=1.

number with pressure coefficient for a free-stream Mach
number of unity.

A second case where the exact and approximate relations
can be compared is furnished by considering the velocity
jump through a shock wave. If the flow ahead of the shock
wave is uniform and parallel to the z axis, the results may
conveniently be represented by the shock-polar diagram in
which /3,7+,® is plotted as a function of %, The exact
relation is furnished by equation (8). The corresponding
approximate relations are determined from equation (10) by
setting u,, 9., and w, to zero, whereby

oot —(U—MH+E | 26)

Once the variation of (v,2+w,?) with u, is determined for a
given M,, the corresponding variation of (,*+w,*) with &,
may be readily determined since, for this case,

Uy=Uo 1%, Dy=0y, We==Wp @70
The variation of /7,+w,® with %, for M,=1.2 has been
computed using both the exact and approximate relations,
and the results are presented graphically in conventional
shock-polar form in figure 4.

It is evident from this comparison that the best approxima-
tion to the shock-polar curve is that obtained by equating
k to MA(y+1)/U,. Since all shock waves are assumed to

be normal to the flow direction in the course of the present
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Fiaure 4.—Approximate and exact shock polar diagram, M,=1.2.
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analysis, & notable point is that this expression for & leads
to the exact relation for the velocity jump through a normal
shock wave.

In problems such as we are considering here, the final test
is provided by comparison with experimental results. Al-
though both experimental and theoretical results for the
transonic speed range are limited, complete information
does exist at the present time for the drag of & single~wedge
section followed by a straight section extending far down-
stream. (See refs. 13, 14, 16, 28, and 29.) The theoretical
results were determined originally using equations obtained
by assuming that the local velocities are only slightly
different from the critical sound velocity a* and are therefore
identical with those that would be obtained using the present
equations, provided % is equated to (v+1)U, Figure 5
shows the theoretical and experimental results plotted in

ri (1
S / il
L e Theory\\/ ~ 3%
ey () P
Tl Single-wedge \
}:I\% / section I~
! Wedge semiangle
}}1 o 45°
\ D 7.5°
) o 10.0°
1 1
(_)2 =l o} ! 2 3
M2=1
2/3
[or+0e/0])
F1aqure 5.—Theoretical and experimental drag results for a single wedge
section, k=7{]|' L

the same manner as in the original papers. The small
vertical lines on the experimental data points represent the
uncertainty of the values. This figure indicates that the
theoretical and experimental results are only in general
qualitative agreement when k= (y+1)U..

The same results are replotted in figure 6 with k equated to
MAy+1)/U, rather than (y-+1)/U,. It can be seen that
the theoretical and experimental results are now in nearly
perfect agreement. Comparison of figures 5 and 6 provides
striking evidence supporting the contention that % should be
equated to M2 (y+1)/U, rather than (v+1)/U.,.

DERIVATION OF INTEGRAL gQUATIONS FOR TRANSONIC
FLOW

In order to make the present work more self-contained, a
derivation of the integral equations for transonic flows
having subsonic free-stream velocities will be presented even
though this has been done previously by both Oswatitsch
and Gullstrand (refs. 20, 21, and 22). The present deriva-
tion, in common with that of Gullstrand, proceeds through
the application of Green’s theorem in a manner closely
analogous to that employed in linearized wing theory (e. g.,
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ref. 30), except that proper cognizance must be taken of the
shock discontinuities and of the additional nonlinear term in
the differential equation for the perturbation velocity po-
tential. For the sake of completeness and to illustrate the
simplifications introduced by making additional restrictions
and assumptions, the derviation will be carried through for
lifting wings of finite thickness and span, even though the
applications contained herein will be confined to two-
dimensional flow about symmetrical airfoil sections at zero
angle of attack.

The differential equation fundamental to the following
discussion is equation (6).

O’ O%p 0%

dp 0
=M it 55— B B

=k 3¢ o2 ©

Since the principal object of the following analysis is to
determine the pressure which, according to equation (16), is
linearly proportional to the perturbation velocity component
u, 1t is convenient to work with an equivalent equation for %
obtained by differentiating equation (6) with respect to z; it is

% , 0% % 0 /u
1—M5 SE T " +W=k 55 (—2—’> (28)

It is advantageous to normalize the equations by letting
- ~ - -k
T=z, Y=By, 2z=Pz =g ¢

g 08k, o 2 k. o 05
a—s-—ﬁ,'u, v—ay_ﬁsv!

where
ﬁ':'\‘ 1 ’_-Zu'a:2

In this way, equations (6) and (28) reduce to the following:

2% | 0% | 0% s 07 ' .
o Tog T oat " ¥~ oz 0% 30)
2%, W, 0%, O (W

o Tos " L og (7) 1)
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Before proceeding, it should be noted that the introduction
of the reduced perturbation velocity component % permits
the ready recognition of regions of subsonic and supersonic
velocities and emphasizes the points at which sonic velocity
occurs, This relationship becomes immediately apparent
upon substituting the definition of % into equation (24).
Thus,

1—M? k

Tl vl (32)

from which it is clear, for flows having subsonic free-stream
Mach numbers (M,<1), that %<1 when the local velocity is
subsonic, u=1 when it is sonic, and %>1 when it is super-
sonie,

As noted above, the derivation proceeds from Green’s
theorem which relates a volume integral over a region R to a
surface integral over the surface = enclosing B. If ¢ and Q
are any two functions which, together with their first and
second derivatives, are finite and single-valued throughout

R, Green’s theorem states
S f ! f (VR—QV)dR  (33)

ffee-es

where the directional derivatives on the left side are taken
along the normal n, drawn inward, to the surface Z. It is
convenient to let @=7% and to choose ¢ as the fundamental
solution 1/r; of the equation Vie=0

e o &9
whereby equation (33) becomes
JJEsmE)]e—-

fkﬂ V*'udR———f)!f 13;;2 2)ir 69

The variables of integration in the equation are £, 7, { while
z,7, 2 are the coordinates of a point P. It must be observed
that 1/r; is singular at rs=0 and % is discontinuous at the
shock wave. The point P and the shock wave must, there-
fore, bo excluded from the region B. The exclusion of P
from the region R is accomplished by enclosing it within a
small sphere. The shock wave is excluded by altering the
boundary of the region so that it goes around the shock wave.
In this way, equation (35) may be applied to the region R.
bounded by the z¥ plane and a hemispherical dome of infinite
radius lying above this plane, exclusive of the subregions
surrounding P and the shock wave (see fig. 7). Since,
furthermore, the values of Z may be assumed to diminish
sufficiently rapidly with distance that the contributions of

413672—b57——15
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Freure 7.—Region of integration.

the integrals over the hemisphere vanish, the following

result is obtained:
o /1 -
o2 (=) | dEdn—
bg— (7'3) &

LY, 2)=—1- ff raa;
ff{[sbn 75 () 1+
%%“_zm(r)]} 4«”

where the subscript 4 denotes conditions on the upper side
of the #j plane, the subscripts ¢ and b denote values immedi-
ately ahead of and behind the shock wave, and S is the sur-
face of the shock wave. The volume integral is defined as

follows when P is ahead of S. (For sake of brevity, ¢ is

written in place ofl_b_<—2)>
ff r13 ba; (2 dREff YdB=
tim .. e [ (T v [ a1 gaE)

It is clear that the corresponding definition of the volume
integral when P is behind § can be obtained by rearranging
the limits of integration. If P is kept fixed in the upper

10
T3 b?

;)dR

(36)
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half space and the region R; bounded by the Zj plane and &
hemispherical dome of infinite radius lying below this plane
is considered, it follows in & similar manner that

ey {55
<7'3>:l [r3 o Yon (Ta)l}ds -
=] [n(3) e @

where the subscript ! denotes conditions on the lower side
of the 7 plane and the volume integral is defined as follows:

) 3,§§=®d35fff¢d3=
tim [ [ dr{ G f vt} 69

Introducing the notation

AT=TU—U;, A-==—t 40)

and adding equations (36) and (38), we have

fﬂ: au“ for (r) gfi',;_
L T2 %Gﬂﬂ%%—
<r">l} 1%, :; @ dR (41)

where the surface integral over S represents the sum of the
corresponding integrals over S, and S; and the volume
integral over R represents the sum of the integrals over R,
and B, The integrand of the first integral of equation (41)
is zero over all of the 2y plane except the surface W of the
wing sufficiently extended to include the effect of the edge
singularities and is, in certain cases, exactly equal to the
value of % given by the linearized theory of subsonic flow
about thin wings (e. g., ref. 30).

= f [[FaSe-m2(3)]dn @

It can be seen that the first integral of equa.tlon (41) may
be equated to %z when the problem is one in which

i@: ;.‘7:72-)=

Au=Auy,
and .
This condition exists in those problems where Au and
A(ou/oy) are prescribed at the outset by the boundary con-

ditions; for example, (a) given the loading on a lifting sur-
face, find the camber distribution; (b) given the shape of a
symmetrical nonlifting airfoil, find the pressure distribution.

Equation (41) can be regarded as the final integral equa-
tion for u, but it is advantageous for the forthcoming anal-
ysis to perform two more operations. They are to integrate
the volume integral twice by parts with respect to £, taking
proper cognizance of the definitions given in equations (37)
and (39), and to decompose the surface integral over the
shock wave into components parallel to the axes of the
coordinate system. In this way, the following equation is
obtained:

ff a S () | e+
zhﬂﬂ$wwwgp$m_
DI DDICT
GOl LGl ]
{EF%0)]-
O 2el]]es w

Although the integration by parts of the -triple integral
performed in going from equation (41) to (43) may seem

‘somewhat arbitrary, the resulting equation is superior from

the point of view of obtaining approximate solutions. TFor
example, the triple integral of equation (41) shows a very
strong influence of the velocities in the region immediately
surrounding P since they are multiplied by 1/#. This in-
fluence is largely nullified in the triple integral of equation
(43) because part of the region has a negative influence and
part has a positive influence. The predominant influence
in the latter case is furnished by the term %?*/2 standing out-
side the integral. The contribution of distant regions is
also diminished in importance in the triple integral of equa-
tion (43) since their influence varies inversely with the third
power of the distance, rather than the first power as in
equation (41). The advantages of using the formulation
provided by equation (43) will become more evident on
examining Appendix B and the section entitled ‘“Sub-
critical flows.”

A further advantage is that the value of the triple integral
of equation (43) is continuous through a shock wave rather
than discontinuous as is the case with equation (41). A
point of great importance in the approximate solution de-
scribed berein arises from the fact that the integration by
parts provides extra terms (those containing %%/2) in the
integrals along the shock surface S which combine with those
already present in such & way that the contribution of these
integrals becomes very small when the shock waves approach
normal waves, as is usually the case at high subsonic speeds.
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In addition to satisfying the integral equation for % given
in equation (43), the velocity components on opposite sides
of shock waves must be in accord with the simplified relation
for the shock polar given in equation (10). This equation
may be rewritten in normalized form by introducing the
quantities defined in equation (29), thus

i+ G 5+ Ty =(BE D) @y (@
Two alternative forms of equation (44) are the following:

(1-%E) @+ G—r @ =0 @9
and

@) | () (0 ) [ G50+ @ =0 49

If the shock wave is a normal wave and the flow is parallel
to the Z axis (i.e., 9,=vr=w,=w»=0, but %,%u,), it can be
seen from equation (45) that the normalized perturbation
velocity component 7 jumps from 1-4A immediately ahead
of the shock to 1—A immediately behind the shock. On
the other hand, equation (46) shows that the quantity ©w—u?*/2
is equal on the two sides of the shock. This is consistent
with the fact that the latter quantity corresponds, in the
transonic approximation, to the mass flow, which is continu-
ous through a normal shock.

The solution, by the present method, of the general prob-
lem of transonic flow about thin wings requires the solution
of equation (43) while taking proper account of the shock
relations given in equation (44). This represents a formida-
ble task well beyond the reach of the present analysis.
Simplification can be achieved in two ways: by restricting
attention to a less general class of problems and by introduc-
ing additional simplifying approximations. The first way is,
of course, much to be preferred. Accordingly, in most of
the following analysis, attention will be confined to two-
dimensional flows. The necessary equations can be obtained
from equations (42) through (44) above by integrating in the
y direction from j=-— » to y=- «, noting that y=0 and
that % and w are independent of 3. They are as follows:

Tp=— 1f<Aau"ln Aﬁb%lnrlg)d? @
o [ S5 EE g {[ no (5
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where
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and

(Ua—%0)*+ Wo—0p)*= (s —)* (50)

As remarked following equation (42), considerable sim-
plification results in both two- and three-dimensional prob-
lems if attention is confined to the determination of the pres-
sure distribution on symmetrical nonlifting wings of specified
geometry. This restriction permits the introduction of the
relations

AE=A'TLL=O

b?—A _= (bw =given . (51)

into the integral over W in either equation (43) or (48).
This integral is then equal to the linear-theory solution 7
given in equation (42) or (47) and can be determined com-
pletely at the outset of the analysis.

SIMPLIFICATION AND APPROXIMATE SOLUTION OF
INTEGRAL EQUATIONS FOR TRANSONIC FLOW ABOUT
NONLIFTING WINGS

QUALITATIVE DISCUSSION OF INTEGRAL EQUATIONS

The integral equations and the auxiliary relations develop-
ed in the preceding section provide & means for the discus-
sion of the aerodynamics of symmetrical nonlifting thin
wings of specified geometry in flows with free-stream Mach
numbers up to unity. At the present stage of development,
however, it is necessary to introduce some further approxi-
mations before solutions can be obtained. One of the more
accurate of these involves two statements about the nature
of the shock waves. They are: (a) all shock waves are
agsumed to lie in & plane perpendicular to ths x axis, and
(b) the shock waves are assumed to be normal shock waves
(i. e., normal to the local flow direction). These two state-
ments are slightly contradictory in themselves but might
be expected to approach the true conditions quite closely
for flows about smoothly curved thin airfoils. The first
statement corresponds to setting cos(n, 7) and cos (n, {) to
zero, thereby eliminating part of the integrals over S of
equations (43) and (48). The second permits an advan-
tageous introduction of equations (30) and (46) to eliminate
the remainder of the integrals over S. The above assump-
tions correspond to setting v and  to zero both before and
after the shock wave and lead to the following relations:

DD, AEDAED @

Equations (43) and (48) thereby simplify to

.Uf 7 ab; (%) dEamE 6

for three-dimensional flows, and

““"‘L*'_"zwf 2 z?;

() @y



218

for two-dimensional flows. These equations correspond to
those used by Oswatitsch and Gullstrand (refs. 20, 21, and
22) although & number of further assumptions were necessary
before approximate solutions could be obtained for the
velocity distribution on an airfoil surface. The present
analysis also requires many of the same or similar assump-
tions, but there are & number of general points which should
be discussed before any further approximations are intro-
duced. These points were not observed in the previous
papers and the results suffer by lacking uniqueness in some
cases and failing to converge in other cases.

Before proceeding further, it should be observed that the
solutions of equations (53) and (54) must approach those of
linear theory when the free-stream Mach number is much
less than unity, since #<1 and the terms involving the
square of 7 become negligible with respect to those linear in
4, thereby leaving only

(E)J\[KQ N'l—‘l:l. (55)

In the interest of brevity, the integral equations for %

given in equations (53) and (54) may be rewritten as follows:

I

u—u[,-l-lb— (56)

2 a2 1 — _
=2 [4wfff 738 () ‘Md-‘*] (57
for three-dimensional flows, and

=2 [%r 5&nG dedc] )

for two-dimensional flows. Although I is a function of %
and is therefore unknown, it is informative to rewrite
equation (56) by solving for # in terms of I and %, thus

U=14+~I—QQu—1)=1++I—L

L=%y,—1

where

- {59
where

Several points are to be observed at once with regard to
equation (59). First of all, the discriminant must always
be positive in order to obtain real values for 7%, thus

IZL (60)
Furthermore, the choice of the plus or minus sign determines
whether the local velocities are subsonic or supersonic. A
change in sign at & point where the radical is zero corresponds
to a smooth transition through sonic velocity. A change in
sign at a point where the radical is not zero corresponds to a
discontinuous jump in velocity. As pointed out following
equation (46), such discontinuities correspond to normal
shock waves and are permissible when they proceed from
supersonic to subsonic velocities (or from plus to minus sign
in equation (59)) when progressing in the flow direction.
Discontinuities in the reverse direction are inadmissible since
they correspond to expansion shocks, a-phenomenon which
violates the second law of thermodynamies.
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The values of %;, and hence L, can be calculated for any
given wing and are generally characterized by certain regions
in which 7 is posifive and other regions in which it is nega-
tive. The absolute values increase continuously with in-
creasing Mach number and the maximum positive values
may considerably exceed unity as sonic velocity is approached
in the free stream. Not very much can be stated at this
point about the values of I, except that they depend on the
distribution as well as magnitude of % and that the above
inequality must be satisfied. The relation between the two
curves is of utmost importance, however, and will be dis-
cussed qualitatively in the following paragraphs,

In order to remove unnecessary complications and to facili-
tate the discussion, the following remarks will be confined to
the relations in two-dimensional flow between the functions
I, L, &, and 7, evaluated at the airfoil surface. In this way,
each of the four functions reduces to a function of & single
variable 7 and can be illustrated simply by curves rather
than surfaces or hypersufaces. The subscript Wis appended
to % and %, to denote that the values are those at the wing
surface. In that which follows, the curves will be shown on
two separate plots, one containing the L and I curves rep-
resenting the components involved in the solution of equa-
tion (59) and the other containing the %, and %, curves
representing, respectively, the velocity distributions given
by transonic theory and by linear theory. In order to make
the discussion more definite, the curves will be drawn quali-
tatively as they would appear for a circular-arc airfoil having
its maximum thickness at the midchord position. A quanti-
tative discussion of these characteristics will be taken up for
the same airfoil in & later section..

The linear-theory solution %, for subsonic flow about cir-
cular-arc airfoils can be easily derived through application
of the expression given in equation (47). It is found that
the values of %, , are symmetrical about the midchord posi-

tion at all free-stream Mach numbers less than unity. It
follows directly that the L curves possess the same symmetry.

For pure subsonic flows about such an airfoil, it is well
known that the more exact treatments, such as the Xdrmdn-
Tsien or the classical iteration methods reviewed in referencc
19, indicate that the nonlinear-theory solutions and, hence,
the % and I curves, are also symmetrical about the mid-
chord position. Since sonic velocity is not attained at any
point, the L and I curves never touch. Sketches of the
curves for this condition are shown in figure 8. The second
part of this figure illustrates the fact that 7 possesses larger
values over the middle of the airfoil chord than does %,

-////_\\2

Ficure 8.—Typical eurves of I, L, 4, and 4, in the suberitical rangec
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This relation has not been deduced from the foregoing pre-
liminary considerations but is known from many sources in
classical subsonic theory. The same result has been found
once again in the present work by carrying out an approx-
imate solution of equation (59). The details of these calcu-
lations will be described in a later section.

The curves shown in figure 8 are typical of those for all
Mach numbers less than the critical Mach number A,
defined as the lowest free-stream Mach number at which
sonic velocity (#w=1) occurs somewhere on the wing surface.
The aforementioned symmetry properties are preserved for
all Mach numbers less than the critical, but the amplitudes
of all four curves increase with increasing Mach numbaer.
For the symmetrical circular-arc airfoils considered here, the
maximum values of %, and %y and, hence, L and I occur at

the 50-percent-chord position for all subcritical Mach num-
bers. Thus, in addition to the requirement that I>TL at
every point, it is necessary when the Mach number is equal
to the critical value, that 7=L at the 50-percent-chord posi-
tion. A rather interesting additional requirement that fol-
lows from the quadratic nature of equation (56) together
with the assumption that % reaches a smooth maximum at
the 50-percent-chord station is that the I and L curves have
not, only the same first derivatives at this station but also
identical second derivatives. A typical set of curves for this
Mach number is shown in figure 9. It is to be remarked
that the minus sign is to be used in equation (59) for all
free-stream Mach numbers equal to or less than A/
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Freure 9.—Typieal curves of I, L, 4, and 4, at the critical Mach
number.

It is interesting to contemplate the various possibilities
that may occur when the Mach number is increased beyond
the critieal. Accordingly, let us first consider the implica-
tions of assuming that the velocity distribution % remains
symmelrical and continuous across the chord and simply
increases in magnitude with increasing Mach number.
(This is, in fact, the only type of mixed flow-field that the
classical iteration methods have indicated, but many
doubts have been expressed from time to time regarding
the convergence of the methods when M,>M...) With such
an assumed symmetry of the flow, the four curves will
appear qualitatively as shown in figure 10. As may be
seen, the curves are all rather similar to those previously
discussed for lower Mach numbers. The outstanding
difference is the relation between I and L. When M,=M,,,
the two curves are tangent at the 50-percent-chord station,
and the radius of curvature of the I curve at the same sta-
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q x/c %
Figqure 10.—Typical curves of I, L, %, and 4, corresponding to a
shock-free supereritical flow, symmeterieal solution.

tion is equal to that of the L curve. When M,>M,,
tangency occurs at two points, equally spaced before and
after the 50-percent-chord station, and the sign in equation
(59) is to be changed to plus over the portion of the chord
lying between the two points of tangency. In order for
Uy to attain its maximum value at midchord, as shown in
figure 10, the radius of curvature of the I curve must be
less than that of the L curve at the 50-percent-chord station.
At the tangent or sonic points, it follows from equation
(59) and the assumption of smooth acceleration or decelera-
tion through sonic velocity that the second derivative of
the I curve is greater than that of the L curve. Similar
considerations apply for airfoils that are not symmetrical
about the midchord station. The occurrence of shock-free
flow would again require that the I curve be tangent to the
L curve at two points along the chord.

Before leaving this subject, it is interesting to inquire
what the result would be of a slight alteration of the airfoil
shape, assuming that the original shape was such that the
associated flow was of the shock-free mixed type. Consider,
for sake of simplicity, that the basic airfoil is symmetrical
about the 50-percent-chord station. The assumed shock-
free flow is therefore symmetrical about the midchord
station and appears as shown in figure 11. In order to
preserve the geometrical symmetry, consider that the air-
foil shape is changed by the addition to both upper and lower
surfaces of small bumps located at the 50-percent-chord
station. Since the flow adjacent to the bumps is supersonic,
their disturbance pattern is propagated downstream in nar-
row bands which reflect alternately from the sonic line
and the airfoil surface as shown in figure 12. Busemann
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Ficure 11.—Shock-free transonic flow.
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Subsofic /  Supersonic

F1qure 12.—Transonic flow with shock wave.

has pointed out in reference 31 that as the disturbances
reach the rear of the supersonic region where the local
Mach numbers of the original flow approach unity, the
reflections become increasingly concentrated, the disturb-
ances amplify, and finally a shock occurs. It thus appears
that there are only a restricted number of shock-free mixed
flows and that, in general, the supersonic region ‘terminates
with a shock wave.

On the other hand, if the disturbances were propagated
forward they would culminate in a shock wave at the forward
sonic point. This shock, however, would be an expansion
shock in which the velocity jumps from subsonic to super-
sonic values. As mentioned previously, expansion shocks
are forbidden by thermodynamic considerations and, hence,
must be excluded from the present analysis. This can be
accomplished by stipulating that the transition from sub-
sonic to supersonic velocities at the forward sonic point be
smooth, or that the L and I curves retain one point of
tangency. In addition to preventing the occurrence of ex-
pansion shocks, it appears, on the basis of the foregoing, that
this requirement also effectively rules out all the undesired
forward propagating disturbances.

The preceding discussion provides an insight into the
mechanism for the development of asymmetrical flows about
symmetrical airfoils and for the occurrence of shock waves.
In the present work, these considerations are reflected in the
relation between the I and the L curves. Thus, recall that
if the flow is shock free as shown in figure 11, the I and the L
curves are both symmetrical as shown previously in figure
10. If the airfoil shape is changed in the manner indicated
in figure 12, it is evident that both the I and the L curves
will become altered. In so doing, the L curve remains sym-
metrical about the midchord station, but the asymmetrical
nature of the % distribution causes the I curve to take on
larger values over the rear of the airfoil than over the front.
If the flow adjusts itself so that the I curve is tangent to the
L curve at a point on the forward half of the airfoil, as it
must do to avoid the occurrence of forbidden expansion
shock waves, it is likely that the curves will not be tangent
at a second point along the rear half of the airfoil. In the
application of equation (59), therefore, the sign changes
from minus to plus at the point of tangency but may change
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back to minus at & point where the two curves have different
values. As noted previously, such a condition corresponds,
in the present analysis, to the occurrence of a shock wave
and is associated with a %, curve of the type shown in
figure 13.

Sinece it has been indicated that the shock-free mixed flow
is the exception rather than the rule, the curves of figure 13
may be regarded as typical for the supercritical Mach num-
ber range. In any event, these curves may be considered
as the more general ones since they include the symmetrical
curves as a special case. These matters will arise again and
be the topic for further discussion in the next section in which
an approximate method for the solution of the integral
equation for transonic flow will be described.

x/c

Y

Figure 13.—Typical curves of I, I, 4, and 1%, corresponding to super-
crifical flow with shock, asymmetrical solution.

SIMPLIFICATION OF THE INTEGRAL EQUATION

The remainder of the present discussion will be concerned
with two-dimensional flow about nonlifting symmetrical
airfoils of specified geometry under the assumption that any
shock waves which may be present are normal shocks situated
perpendicular to the z axis. The analysis will be based there-
fore on equation (54) which, when written in full, is
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Approximate solutions of this equation could conceivably be
worked out numerically by starting with a two-dimensional
grid of suitably selected values for %(£,¥) and iterating until
convergence is obtained. Such calculations would proceed
by inserting the assumed values for % into the double integral
and solving to obtain the next approximation for %(z,z),
making use of the tangency condition on the surfaces or
functions represented by I and L as discussed in the preceding
section. If the first approximation for % is taken to be the
results given by incompressible or by linearized compressible
flow theory, as in the Rayleigh-Janzen and other classical
iteration methods, it seems to be the prevailing belief that
convergence will be obtained only when the free-stream
Mach number is sufficiently small that the flow is subsonic at
every point. -Itis at this point that Oswatitsch (refs. 20 and
21) supplied the important idea that mixed flow fields con-
taining shock waves can be obtained if the starting % distri-
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bution contains shock waves. Thus, in place of taking the
starting solution to be that given by incompressible or
linearized compressible flow theory, the idea is to start with
a reasonable guess for the values of %, being sure to include a
proper discontinuity complying with the shock relations of
equation (62), and then to proceed to the solution. As will
be seen in the succeeding sections, it is not necessary to be
highly accurate in the initial guess for %.

A source of difficulty in the numerical solution of equation
(61) by an iteration process is the double integral. If it
could be reduced to a single integral by introducing a suitable
approximation, the entire problem would be greatly simpli-
fied. In the present analysis, it is assumed, following
Oswatitsch, that approximate knowledge of the velocity
distribution is sufficient for providing a working approxima-
tion for the double integral. In particular, it is assumed that
a sufficiently good approximation to the velocities in the
vicinity of the wing can be expressed in terms of the local
coordinate z, the ordinates of the airfoil surface z(z), and the
desired but unknown velocity distribution uy(z) on the
airfoil surface. This permits one integration to be performed,
thereby reducing the double integral of equation (61) to a
single integral.

A number of statements regarding the variation of % with
Z over the middle portion of the airfoil can be made immedi-
ately. For example, % starts from the value %y at the air-
foil surface with an intitial rate of change given by the
irrotationality condition

).,

and probably vanishes at great distances as 1/z%. These
conditions, of course, are not sufficient to determine com-
pletely the variation of % with z, but may be used as the
basis for the development of an approximate relation.
Oswatitsch (refs. 20 and 21) has already considered this step
and has suggested the following relation:

@A~ )
where b is a function of Z so chosen that the irrotationality
condition is fulfilled at z=0. Thus, differentiation of equa-
tion (683) with respect to z and insertion of the definitions of
equation (29) and the boundary condition of equation (14)
yield the following:

b 2y %y iy
(bu/b?i),y W)y  k (Qw/oR)w

kU, (b”Z/b:c’) @22/352) 64)

whore Z represents the reduced ordinates of the airfoil,
related to the actual ordinates by

Ze="2: 70 ©5)

Attention is called to the fact that the approximate relation
for %(Z,z) given above is not entirely satisfactory. Evidence

of this is provided by the fact that % is indicated to be zero
in the region ahead of the leading edge and behind the
trailing edge where b is infinite and that the discontinuities
in % at the shock surfaces are consistent with the shock
relations only at the surface of the airfoil. The errors in the
pressures on the airfoil surface resulting from the former are
small due to the attenuating influence of distance, and those
resulting from the latter have been partially compensated
for by a readjustment of the approximation at Mach num-
bers near unity where the shock strength becomes large.
Substitution of equation (63) into the double integral of
equation (61) permits integration with respect to ¥. Thus,
by performing this integration and setting z=0, the following
approximate integral equation is obtained for 7:

—a ren
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The function K is
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The nature of E(X) is illustrated graphically in figure 14.
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Figure 14— Variation of E(X) with X.
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Although the integration interval is indicated in equation (61)
to extend from f=— » to £=- o, the contribution of the
regions ahead of the leading edge and behind the trailing edge
is zero since b is infinite. The integration need, therefore, be
carried out only over the chord ¢. It should be noted that
the integral in equation (66) corresponds to /2 in equation
(56).

Although equation (66) is considerably simpler than
equation (61) owing to the replacement of the double integral
by a single integral, many of the essential difficulties remain
since the integral equation is still nonlinear and the kernel
is singular. Since no known methods exist for the solution
of such equations, we can only proceed at the present time
by introducing additional simplifications. One method
proceeds by approximating uyw with some simple functions
having certain parameters temporarily unspecified. Values
for the latter are determined by substituting the functions
into the integral equation and satisfying the equation at a
limited number of points equal to the number of unspecified
parameters. At this point in the analysis, Oswatitsch
assumed that the variation of %y across the chord could
be represented by a parabola, one or two half-parabolas,
or a rectangle combined with a half-parabola, as illustrated
in figure 15, all of unspecified height and chordwise extent.

YawawavIn

F1GURE 15.—Assumed chordwise variations of Iy used by Oswatitsch.

No account was taken in the integral of the influence of
the region between the leading edge and the station where
UL, =0 on the forward part of the airfoil nor between the

station where %;,=0 on the rear of the airfoil and the

trailing edge. Upon inserting & selected combination of
the above mentioned elements into equation (66) and inte-
grating, there resulted a system of simultaneous quadratic
algebraic equations having as many members as there
were elements in the selected general form of solution.
In many cases, Oswatitsch used only one element, either
a perabola or a half-parabola and assumed a mean value
for b for the entire chord. The method included no provision
for the improvement of the result through iteration or other
means, the only measure of the accuracy being the degree
of correspondence between the initial and the final %y dis-
tributions. Nevertheless, the results presented in references
20 and 21 were encouraging in that they showed many of
the known characteristics of transonic flow about airfoils.
In particular, shock waves appeared when the critical
Mach number was exceeded and moved rearward with
further increases in Mach number. However, because the
initial values for %y were generally substituted not only
into the integral but also into the term %uw?/2 standing
outside the integral, and because the tangency requirement
on the [ and L curves necessary for smooth transition
from subsonic to supersonic velocities was not realized, a
multiplicity of solutions was often obtained. In one case,
three solutions were actually given and more could have
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been obtained which would have fulfilled equally well tho
condition of correspondence between initial and final result.
In addition, the quality of the results appeared to deteriorato
when the Mach number was increased to higher values, the
upper limit of acceptability appearing to be & Mach number
of about 0.88 for 6-percent-thick airfoils.

The integral equation method has been developed further
in references 22 through 25 by Gullstrand. In the first of
these, reference 22, equation (61) is simplified to a single
integral equation through the use of a more elaborate veloc-
ity-distribution function than that given in equation (63),
and the resulting equation is solved by an iteration process.
The introduction of an iteration procedure makes a marked
improvement over the method of Oswatitsch since it then
becomes practical to increase greatly the number of elements
with which %y is represented. The method is applied to
three 6 percent-thick NACA low-drag airfoils and the re-
sulting velocity distributions are given. In common with
the original method of Oswatitsch, difficulties occur when the
Mach number is too close to unity. The highest Mach
number for which results are given is 0.91. More recently,
Gullstrand has presented approximate solutions for the
velocity distributions on symmetrical airfoils in sonic flow
in reference 23.2 In both of these works, however, the itora-
tion process proceeds by inserting the known values into
both the integral and the term wuy?/2 standing outside the
integral. This procedure is equivalent to replacing the
second-degree equation for %y with a linear equation and
obscures or loses many of the characteristics of the quadratic
solution discussed in the preceding section.

The present analysis also proceeds through the use of an
iteration scheme, partly numerical and partly graphical, but
the known values are substituted only into the integral at
each step of the process. The quadratic nature of the equa-
tion is thereby retained and the tangency condition on the
I and L curves can be fulfilled. Satisfaction of the latter
requirement is essential for uniqueness and convergence.
Inasmuch as the calculations for the circular-arc section
were well advanced when Gullstrand’s papers were received
and were producing reasonable results with the simplo
velocity-distribution function of Oswatitsch, it was decided
to continue rather than to start over using a more elaborate
velocity-distribution function. It has been found, however,
that additional attention must be paid to the influence of
the region behind the trailing edge at the higher Mach num-
bers. Upon observance of these additional refinements, re-
sults are obtained for all Mach numbers up to unity. At the
lower Mach numbers, these results are in general agreement
with those found by the simpler, although more approximate,
method of Oswatitsch. The present method carries right
on, however, into the higher Mach number range where the
simpler method met with difficulties and succeeds in showing
the well-known invariance of local Mach number with
changes in the free-stream Mach number as the latter
approaches unity.

2 Since equation (61) degensrates at & Mach number of unity where =0, the sonlo results
of reference 23 are obtained by first developing a new double-Integral equation to replaco
equation (61) and then simplifying and solving by an iteration procedure. Tho Integral
equation is only used, however, to determine the velocity distributlon over tho portion of tho
airfoll forward of the station of maximum thickness. The remainder of the golution {8 ob-
tained by means of the theory of chareoteristics,
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In the present calculations for circular-arc airfoils, the
necessity for additional refinement begins at Mach numbers
somewhat greater than that at which the shock wave reaches
the trailing edge. Consequently, no attempt is made to
account for the influence of the region behind the wing until
the Mach number becomes sufficiently large for the shock
wave to reach the trailing edge. At higher Mach numbers,
the influence of this region is approximated in the following
manner. Tirst, it is assumed that the shock wave which
stands at the trailing edge remains of the strong family as
the free-stream Mach number is increased to unity. It is
assumed furthermore that the flow is parallel to the Z axis at
the shock position and that the shock wave is normal to the
local flow. With these assumptions, it follows from equa-
tion (45) that the values of % immediately behind the shock
wave are related to those immediately ahead of the shock by

Eb= 2_;174 (68)

Since %, is given by equation (63), it follows that %, can be
expressed in terms of the values of %y and b immediately
ahead of the shock wave in the following manner:

Uy(2)=2— (69)

’l-dea
1+ /b))
Because the shock terminates within a finite distance of the
airfoil at all subsonic Mach numbers, equation (69) is
appropriate only within a certain range of |Z|, namely,
that for which %,>>1. In the present calculations, the end of
the shock occurs at such large |Z| when the shock is at the
trailing edge that equation (69) has been used to represent
the values for % behind the trailing edge for all [Z|. It is
further assumed that the contribution of the region behind
the trailing edge can be satisfactorily approximated by
equating % to %, for all points behind the trailing edge. It is
recognized that neither of these assumptions constitutes a
good approximation for Z at great distances from the wing,
but the attenuating influence of distance diminishes the
crror in the values of the integral at points on the airfoil
surface. In this way, equation (66) comes to be replaced
with the following relation determined from equation (61)
by performing an integration with respect to ¢ under the
assumption that the variation of % with Z (or ) is given by
equation (63) for stations ahead of the trailing edge and by
equation (69) for stations behind the trailing edge.

Uy’ E—z '”Wa E—Z\
[ e () -G e(5E)

'Urr'—uz,,y"f'

“l“ 1'?(E ““)dg o) |

where I is as defined by equation (67) and F is given by

£~z _
) =F(X)=—F——53 (1+X2)3 (=] X|3—XP
2(1—3X)In|X|—@B+2X*—X9] (71)

L

413072—bH7——16

The nature of F(X) is illustrated graphically in figure 16.
In this case it is apparent that the three integrals of equation
(70) taken together correspond to I/2 in equation (56).

To summarize, equation (66) is used in the present calcu-
lations when the Mach number is less than that at which the
shock wave first reaches the trailing edge, and equation (70)
is used for higher Mach numbers. No significant discon-
tinuities are produced in the value of the integrals, however,
sinco the contribution of the additional integrals only
becomes significant at Mach numbers greater than that at
which the procedure is changed.

6

Ftx)

0 5 0o 15 20 25 30
X

Frcurs 16.—Variation of F(X) with X.

NUMERICAL EVALUATION OF INTEGRAL

One of the principal steps in the iteration method used
herein for the solution of equations (66) and (70) is the
evaluation of the integrals. Since %w and b are generally
prescribed by & set of numerical values rather than by
analytical functions, & numerical technique has been used
for the integration. This process consists of replacing the
prescribed uw distribution with a stepwise approximation as
indicated in figure 17, introducing & mean value for b for
each of the rect.a.ngular elements, integrating to determine
the contribution of a single element, and summing the
influence of all the elements. The contribution of a single
element of width [ situated on the airfoil chord, as typified by

the shaded area of figure 17, is given by
E(’E ) g (72)

Al Q1%
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77

- x/c

— 4—-7[.

Fiaure 17.—Stepwise approximation used in evaluation of integral
when shock wave is forward of trailing edge.

Upon performance of the indicated operations, the following
expression is obtained for fi: .

S o ] A9 AP 8 04981+

124 (A*—1) In |A|— AQ+49 [(1+A493+12] }+

BB 5 5] B OBy (B -8+
12B (B*—1) In|B|—B(14-B?) [1+BY+12] } 73)
where
L+2 (Z—%) 1 2l x—z, 2l
A= S )

74

—2(z—£) 1 2& (a:—a)
B=t—ry— 25, i 2

Thus, the integrals in equations (66) and (70) that contain

E are approximated as follows:
I g (02) iy e 4 [ (BE), (24
f 35 E( ) d=2— f‘[( I ) (bi)] 75)
It is evident from equation (70) that the contribution of
a single element of width ! situated behind a shock at the
trailing edge, as typified by the shaded area of figure 18,
is composed of two parts. The first depends on an integral
involving E(X) and is evaluated using f; in the manner just
described for elements on the airfoil. The second depends
on an integral involving F(X)

|:<z—e,) (2L>:|__ L fd_—F( - )dg 76
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FrourE 18.—Stepwise approximation used in evaluation of integral
when shoek wave is at trailing edge.
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which, upon evaluation, yields

o= 5 fay (49 U+ 4)—2)—241n |4~

A} e 5 [ (0B 0+ B2~
28 1n[B~B (+5 } (77

where A and B remain as defined in equation (74). Thus,
the integral which contains F in equation (70) is approxi-

mated as follows:
i z—E (2
Eg‘[ » ) <T>] 78)

5752

Values of f; and g; are presented graphically in figures 19
and 20. (It is noted that the graphs in reference 21 that
correspond to figure 19 of this report are mislabeled.)

With the simplifications introduced in this section, the
function I of equation / 56) is approximated by

G [ED@]

for Mach numbers less than those for which the shock wave
is situated at the trailing edge of the airfoil, and

ro={ =% A () )+
o) E
@) e

for larger Mach numbers.
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Computed from equation (73).

%lf for various values of

DETERMINATION OF uy,

The term %, that appears in the integral equation for
transonic flow represents the values for % given by linear
theory for points on the airfoil surface. Its values can be
obtained from the general two-dimensional solution for
given in equation (47) by performing the indicated operations
and setting Z=0. As noted in equation (51), simplification
occurs for the symmetricel nonlifting airfoils being considered
herein because

A=u,—u;=0

oy, Oy _k ,dw_ kU, PZ_ &IZ
AaIAa =5 A 2ﬁ°d£’2d? (81)
thus
uLW=lzm (——-f 2 == )
tim (L2 (92 L g\ L (“dZ. dE
—lﬁ’?( 733 Jo G d*)“wﬁ &7t

The Cauchy principal value is understood in the last integral.
The present calculations are for thin circular-arc airfoils for
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%i for various-values of I Computed from: equation.(77). .

which the reduced ordinates Z, of the upper surface are given
by

e A -} 0]
Z 2.5 {Zt [c (c) }_270 it ®3)
where 7 represents a reduced thickness ratio which is related
to the actual thickness ratio as follows:
-_kU,t
T= F ¢

Performmg the indicated operations gives the following
expression for %

u;,w—— 7 I:1+(1 x) n 2

We thus have, by substituting equation (85) into equation
(59),

(84

(85)

L@ =20, —1=27 [1+ —~—) In ——]—1 (86)

It is seen that 7 plays the role of a similarity parameter.
Thus, %y, for a family of symmetrical nonlifting airfoils hav-
ing the same thickness distribution depends only on 7 and
the position coordinate #/e. Inspection of the integral equa-
tions for transonic flow shows that their solutions for 7 also
depend only on 7 and Z/ec.

Many previous papers on transonic flow (e. g., refs. 12,
14, 16, 17, and 18) have used the symbol £, to designate a
Mach number thickness ratio parameter different from the
parameter 7 used herein. The definition of £, suitably gen-
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eralized to allow for various expressions for %, and the rela-
tion between £, and + are as follows:

1—M} 1\
N 7
The parameter £, possesses the distinct practical advantage
of approaching zero rather than infinity as the Mach number
approaches unity. The corresponding parameter referring
to the local conditions has commonly been designated by
the symbol £.

1M
N 7RI

where M is the local Mach number. Since the quantity
1—2L2 is shown in equation (24) to be equivalent, in the
present approximation, to 1—M,2*—ku, the relation for £
may be rewritten as

(88)

1—MP—ku
=TT (89)

which may be expressed in terms of % and ~ as follows:

Z—1
==

(90)

ITERATION SOLUTION OF INTEGRAL EQUATION

Solutions of the simplified integral equations have been
obtained for transonic flow about circular-arc airfoils by
using & numerical and graphical process. Four slightly
different techniques are used depending on the Mach num-
ber or, more precisely, on the value of 7. One procedure
is used for the subcritical Mach number range, a second is
used in an attempt to find supercritical shock-free solutions,
a third to determine supercritical solutions in the range of
7 for which the shock position is forward of the trailing edge,
and a fourth for still larger values of 7. The latter range
extends up to a freestream Mach number of unity.

Subcritical flows.—Solutions for small Mach numbers can
be obtained by a direct iteration process starting with the
linear-theory solution. In detail, the calculations proceed in
the following manner. The values of %, corresponding to &

given 7 (specified thickness ratio and Mach number) are
calculated from equation (85). The %, curve is approxi-
mated with a stepwise distribution of ten steps, and the
values of the I curve are computed therefrom using equeation
(79). Knowing the values of %z, (z) and I(z), one obtains a
first approximation to uw(z) using equation (59). The
process is now repeated using the values for Uy to calculate a
new [ curve, from which a second approximation can be de-
termined for %y, ete. A typical set of results illustrating the
convergence of the process is shown in figure 21. The
process appears to converge rapidly, at least in the present
calculations, whenever the Mach number (or more properly 7)
is sufficiently small that % does not exceed unity (or the local
velocity does not become supersonic) at any point in the
calculation. If 7 is increased to a value such that % becomes
equal to one at any step in the iteration, however, the process
terminates abruptly with the appearance of complex values
of u. Since the results of successive iterations oscillate in
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" this Mach number range and since the starting %, distribution

provides maximum values that are too small, any such
termination occurs in the first iteration step. Such an
abrupt termination of the calculations is in marked contrast
to the well-known property of the classical iteration methods
of producing second- and higher-order solutions indicating
shock-free mixed flows. It will be shown in the following
discussion that the difference in behavior is not a product of
the additional assumptions and approximations introduced
herein, but stems directly from the recognition and retention
of the quadratic nature of equation (61).

~—First approx.
-==Third approx,
3 éfg’
D/-w Y -~ - I/ it ~
7 I’ \\
/d /: \‘\
I_Second approx. N

sy
/

e

=~

)

\
LU \

"o 2 4 6 8 10
x/c
Ficure 21.—Results of iteration calculations in the subcritical range,
7=0.229.

This point can be discussed in greater detail by confining
attention to only the first step of the iteration procedure in
which the I curve is celculated using Uw="uz,,. If the present

iteration procedure is used, if the %, curve is replaced with

ten rectangular steps as shown in figure 17, and if the I curve
is calculated using equation (79), then equation (66) yields
the following result for %y at the 50-percent-chord station
of a circular-arc airfoil:

— [e\__ _8- —
uw<§)—-1ﬂ:w/1 S +1.0307

For low Mach numbers, 7 is small, the discriminant is posi-
tive, and the first approximation for %y can be readily ob-
tained using the minus sign. As 7 increases, the value of
the discriminant decreases and becomes negative when 7
exceeds 0.490. This value of 7, therefore, represents an
upper limit for the Mach number at which the present
process can lead to a useful result if the starting %y distribu-
tion is taken to be that given by linear theory. The value
of uw(c/2) given by equation (91) is equal to (47/m) at
small 7, and attains a maximum value of unity when 7=0.490.

The clasgical iteration methods of subsonic flow theory
have not shown such an abrupt termination of solutions

(1)
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upon attainment of somic velocity. The same situation
occurs with the present equations if the iteration procedure
is altered so as to conform with the classical methods. This
change consists simply of substituting %, into not only the

integral of equation (66) but also the term %y*/2 standing
outside the integral, thereby converting the quadratic
equation for %y into a linear equation. If this procedure is
adopted together with the same value for the integral that
was used to obtain equation (91), the result of the first
iteration is

Ty <2)_— TH0.2057 ©2)

Since a linear equation is solved at every step of the iteration
process, the procedure never terminates. Values for %y in
the midchord region become larger with every iteration step,
however, and it seems to be the prevailing belief that con-
vergence is obtained only for Mach numbers less than the
critical,

It is of interest to compare the approximate results of the
first iteration step reviewed above with the exact results for
the same airfoil given by Hantzsche and Wendt in reference
32. If the latter results are made comparable to the present
results by taking the limiting value corresponding to small-
disturbance transonic flow theory, the exact result of the first
iteration step is

Ty (5)=
(5=
The first term of both equations (92) and (93) is that given
by linear theory and is the same in both calculations. The
difference in the coefficient of the second term is the result
of the errors introduced in the approximate solution of
equation (61) (i. e., the velocity-distribution function, finite
steps for %y, ete.) and is some sort of a measure of the accu-
racy of the approximate calculations. Just as with equation
(92), a value for uy can be calculated for all 7, although the
question remains of whether the result is a valid first step in
2 convergent process.

If Hantzsche and Wendt had performed their iteration
calculations in a manner comparable to that deseribed herein
so that the values of u,, are not introduced as an approxima-
tion for % in determining the important influence of the points
lying near P, they would have obtained the following relation
(again to the approximation of transonic flow theory) as the
result of the first iteration:

T

=1 :I:\/l—; 741.1087 (94)

(--- P=t7t0257 T (99)

This result is directly comparable with that given in equa-
tion (91) except that the double integral of equation (61) is
evaluated exactly rather thapn approximately. Again, the
accuracy of the approximations can be evaluated by com-
paring the two equations. More important, however, is the
fact that the exact results also terminate when T exceeds &
certain value (0.503) and that the corresponding value for %

is unity. This subject is discussed in greater generality in
Appendix B.

As noted above, the first step of the present iteration pro-
cedure starting with 4; produces maximum values for %
that are too large. Consequently, the calculations terminate
at a value of 7 that is somewhat less than corresponds to
the true critical Mach number. Solutions can be obtained
for the remainder of the suberitical Mach number range,
however, if the starting %y is selected having the same general
form but larger values than the corresponding %y, distri-
bution. A good starting distribution can be obtained by
simply extrapolating the final results for smaller .

Calculations of the type just described have been carried
through for several values of r less than the critical value
(7=0.598), defined as the smallest value of 7 at which sonic
velocity (Up=1) is attained in the final transonic solution.
The results of these calculations are presented in the form of
chordwise %y distributions for various 7 in figure 22, and in

1.2
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Fraure 22.—Chordwise variation of @y for various 7 in the suberitical
- - range.

the form of curves of Uy versus 7 for various /¢ in figure 23.
The corresponding values %, given by linear theory are also
shown in figure 23. Comparison of the two sets of curves

reveals that the values of Uy coincide with those for Uy, at

. 3 The results for ¥=7., are also included on these graphs in order to complete the suberitical
range, even though they are obtalned using a different {teration procedure. Since the pro-
cedure is the same as that described in the next sectfon, however, no further comment Is
necessary at this point.
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amall 7 (low Mach number) but become larger than those for
Uy, at most stations on the airfoil as 7 approaches 7. These
trends, which are in accord with generally accepted experi-
mental and theoretical results, will be discussed at greater
length in 2 later section.

Shock-free supercritical flows.—Although it is indicated
in the preceding discussion that the present iteration process
does not lead to supercritical shock-free flow about airfoils
when the starting point for the iteration calculation is u;, it
is considered of importance and interest to ascertain the be-
havior of the present approximation when such a solution is
deliberately sought by starting with sufficiently large values
for « that I is greater than L. The interest in this matter is
heightened by the fact that the less detailed method used by
Oswatitsch leads to such results over a limited range of super-
critical Mach numbers. (See figs. 4 (¢) and 4 (d) of ref. 20 or
figs. 7 (c) and 7 (d) of ref. 21.) Accordingly, iteration calcula-
tions have been performed starting with 7 greater than 7.
and a symmetrical shock-free uy distribution containing a
region of supersonic flow (¥y_>1) over the middle portion of
the chord. A slight change in the iteration procedure is
necessary, however, to eliminate the difficulty arising from
the requirement described in an earlier section that /=L
at the sonic points. To carry out the solution in the same
manner as before would require that the 4y, distribution be
found for which the corresponding I curve is tangent to a
given L curve. Rather than attempting to find solutions by

such indirect means, a method is used in which a new value
of 7 is determined in such a manner that the tangency con-
dition is fulfilled. In particular, the procedure is to calculate
the I curve using equation (79) and the assumed values of 7
and %y. The next step consists of plotting the I curve and
fitting an L curve computed from equation (86) for whatever
value of 7 is necessary to fulfill the tangency condition as
shown in figure 10. A new set of values for %y can now be
calculated using equation (59).

Uy=14+T—L (59)

where the minus sign is used at stations upstream from the
forward sonic point and downstream from the rear sonic
point and the plus sign is used for the intermediate stations.

This process has been carried out for a number of assumed
initial %y distributions. Figure 24 shows a typical set of
results obtained by starting with an initial value for 7 of 0.65
and a %y distribution obtained by extrapolating the frends
indicated by the solutions for subcritical flows. The as-
sumed initial distribution is indicated by a dotted line in the
upper portion of part (2) and the associated 7 and L curves
are shown immediately below. The tangency requirement
is fulfilled by taking 7=0.642 which compares well with the
initial value of 0.65. The corresponding uy distribution
caleulated therefrom is shown in the upper portion of part (a).
Several points of interest are to be noted. The first, of
course, is that the assumed and calculated %y distributions
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F1qure 24.—Results of successive iteration steps in an attempt to find a shock-free supercritical solution.
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are distinctly dissimilar. The second is that the calculated
distribution bears a marked resemblance to & result given
by Oswatitsch (see fig. 4(d) of ref. 20 or fig. 7(d) of ref. 21)
which may be described as a symmetrical #y distribution
containing an abrupt expansion on the front of the airfoil
and a compression shock symmetrically situated on the rear
of the airfoil.

Since the assumed and calculated %y distributions are too
dissimilar to be regarded as solutions, the iteration process
was continued, using the calculated results of the first step as
the initial values for the second step. The results of this
caleulation are summarized in part (b). As indicated, 7
changes from 0.642 to 0.671 and the new uy distribution is
again markedly dissimilar to the initial distribution. The
calculations have been carried through several more steps
and the results are shown in parts (¢) through (f). It can
be seen that the initial and calculated 4y distributions do not
agree, even qualitatively, until several steps of the iteration
process have been completed. In the meanwhile, the value
of 7 has decreased to approximately that for the critical
Mach number and the region of supersonic flow has effec-
tively disappeared. The sixth and last step of the iteration
calculations presented in figure 24 has produced a value of
7=0.600 and a %y distribution nearly identical with that
shown in figure 22 for the critical Mach number (7,=0.598).
Although this figure shows the results of only one series of
calculations, similar results have been obtained starting with
other assumed symmetrical, shock-free, supercritical %, dis-
tributions. No case was found in which the calculated values
repeated the assumed values until 7 had decreased to ap-
proximately 7., and the supersonic zone had vanished. -

It should be noted before leaving this section that these
results are not presented with the intention of proving-er
disproving anything about the more fundamental question
of the existence or nonexistence of shock-free transonic flows.
The purpose, rather, is to illustrate the behavior of the
present approximation furnished by the simplified integral
cquation and the iteration method of solution. '

Supereritical flows—shock wave forward of the trailing
edge.—The preceding section has shown how the present
method of calculating velocity distributions on thin air-
foils fails to converge when 7 is greater than 7., and the flow
is assumed to be shock free. The identical iteration process
will converge rapidly to a solution, however, if the initial 75
distribution contains a discontinuity in accord with the
shock relations. The method starts by selecting a value for
7 and assuming a reasonable distribution for %y over the
chord. The main point to observe in the selection of %y is
to include a shock wave (a discontinuity in%y) through which
Tw jumps from 14 A immediately ahead of the shock to 1—A
immediately behind the shock. As noted previously, such
a jump in Uy is consistent with the assumption that the
shock wave is a weak normal shock. The next step is to
calculate the I curve using equation (79) and the assumed
values of %y and 7. The I eurve is plotted and an I curve
is computed using equation (86) and whatever value of 7 is
necessary to fulfill the tangency condition, as illustrated in
figure 13. A new set of values of Uy can now be calculated
using equation (59), taking proper care to change from the
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minus to the plus sign at the point of tangency and then re-
turn to the minus sign aft of the assumed shock position. In
this way, a new approximation for the %y distribution cor-
responding to the new value for 7 is obtained, but the posi-
tion of the shock wave is unaltered. If the new values for 7
and 7y are sufficiently close to the assumed values, it is pre-
sumned that an approximate solution has been found. In
general, however, such a close correspondence is not obtained
after the first step, and the entire calculation is repeated
using the new values for 7 and %y in place of those assumed
initially. Throughout the process, the position of the shock
wave is kept fixed, and the value of 7 is allowed to vary as
necessary. In this way, the iteration process sclects the
solution for a given shock position rather than for a given
Mach number. This process was carried out with the shock
wave situated at several different stations on the airfoil
chord and was found to converge rapidly even when the
selected initial values for 7y and 7 differed considerably from
their final values. A typical set of results (namely, that for
the shock position fixed at 90-percent-chord station) is shown
in figure 25. In common with the rest of the calculations,
the initial values for. % and 7 were selected by extrapolating

3
——— Initial Ty (F=1.043)
[First approx, (t=1033)
Second approx, (¥x=1.029) 4
2
- ! /
Uy
[0}
/
/
A
D\
\
_! )
° 2 A4 .6 B 10

x/c
Ficure 25.—Results of iteration calculations with shock wave at 90-
percent chord.
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the trends indicated by the calculations for more forward
shock positions.

Calculations of the type just described have been carried
through with the position of the shock wave fixed at 60-,
70-, 80-, 90-, and 100-percent chord. The results are
presented as chordwise %y distributions for various 7 in
figure 26 and as the variation of %y with 7 at selected values

of Z/c in figure 27.

45
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' / /ﬂ

Ta,641—~—

-1.0
0 2 4 .6 8 Lo

x/c

T1aoRrB 26.—Chordwise variation of i for various 7, shock wave for-
ward of trailing edge.

In order to test the method further, calculations were
repeated in many of the cases using a different set of initial
values for 7 and %y. The results of two such calculations
for the shock position at the 90-percent-chord station are
shown in figure 28. Although the results shown in part (a)
were obtained using values for uy that were purposely
selected to be too large and those of part (b) to be too small,
it can be seen that similar results are obtained after only a
few steps of the iteration process. These same results are
presented in a second manner in figure 29 wherein the values
of Uy at several stations on the chord are plotted as & func-
tion of 7. The final values to which the calculations con-
verge (i. e., those given in fig. 27) are indicated by the solid
line. The points connected by the dotted lines are the
values obtained at each step of the calculations. It may
be seen that the present procedure appears first to place
the values of %y and 7 on the curve of correct solutions and,
subsequently, to converge to the final result.

Supercritical flows—shock wave at the trailing edge.—The
calculations just described indicate that the shock wave
moves rearward with increasing 7 and reaches the trailing
edge when 7=1.34, corresponding to a Mach number of 0.92
for a 4-percent-thick circular-arc section. The calculations
for larger subsonic Mach numbers were performed under
the assumption that a strong shock wave remains at the
trailing edge. As in the preceding analysis, the shock wave
is assumed to stand perpendicular to the z axis, and the flow
is assumed to be normal to the shock wave, even though
these conditions cannot be correct at the base of the shock
wave since the flow must turn through a finite angle.

The method of calculation used for the higher Mach
number range where the shock wave stands at the trailing
edge is essentially the same as that used for mixed flows at
lower Mach numbers. A slight modification enters in that
the I curve is calculated by means of equation (80) rather
than (79). This change is made because the contribution
of the region immediately behind the trailing edge becomes
of increasing significance as the Mach number approaches
unity. Since the contribution is small at the lowest Mach
number for which the shock wave is situated at the trailing
edge, no significant discontinuity is produced in the results
by this change in procedure. A difficulty arises in the itera~
tion process, however, because there is no longer any dis-
tinguishing feature to fix the value of 7 for which the solution
is being sought. To review, for pure subsonic flows, 7 itself
can be maintained at a fixed value from step to step in the
iteration process. At Mach numbers somewhat greater
than the critical, where the shock wave stands on the airfoil,
the tangency requirement makes it difficult to prescribe 7
directly but e satisfactory method is obtained by fixing the
shock position and carrying out the iteration process until
the associated value for 7 is found. At still larger Mach
numbers, the first method is of no avail and the second
method cannot produce a unique result since the shock wave
is considered to be fixed at the trailing edge over the rest of
the range of subsonic free-stream Mach numbers. TFor lack
of a better method, the calculations were carried out for
this range using & procedure that might be described as
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Ficure 27.—Variation of @y with 7 for various values of Z/¢, shock wave forward of trailing edge.
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Fraure 28.—Results of iteration caloulations started with deliberately poor assumption for 1y, shock wave at 90-percent chord.

being partly iteration and partly trial and error. The
calculations proceed as follows: A value of 7 is selected
and an estimate made for the associated %y distribution.
On the basis of these values, calculations are performed
resulting in a new set of values for 7 and %y. Similar cal-
culations are repeated on a trial-and-error basis using
the same %y distribution but various values for 7 until
the resulting 7 is equal to the assumed value. These
values are then plotted on a graph of %y versus 7. If these
values were an actual solution of the integral equation, the
resulting values of %y would also be equal to the assumed
values. In the present calculations, however, the resulting
values of %y are generally found to be somewhat smaller

than the assumed values. These new values for %y, to-
gether with a smaller value for 7, are next taken as the start-
ing values for a second series of trial-and-error calculations.
Again, the Uy distribution is held fixed as various values are
tried for 7. The calculations are again terminated when
the value of 7 is s0 selected that it repeats itself. The values
of Uy and 7 are then plotted on the graph. Unfortunately,
it was not found possible in the present calculations to de-
termine a set of values for %y and 7 that would repeat them-
selves precisely. In all cases investigated, the values of
Uy and 7 were found to diminish somewhat in successive
iteration steps. The source of this difficulty has not been
ascertained at the present time. It could be due to one or
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Fioure 29.—Results of caloulations with shock wave at 90-percent
chord. (Cross plot of data in figures 25 and 28.)

more of the simplifying assumptions introduced in the ap-
proximate calculations or it could be due to the fact that
an iteration process was not devised which would lead to a
definite result, as at smaller 7.

There are a number of points, however, which tend to
indicate that the successive values of %y and 7 obtained
after the first few iteration steps may be regarded as near
solutions. One of these concerns the fact that calculations
made starting with different initial values for %y and 7
converge to o common result after the first few iteration
steps. To illustrate, results of typical series of calculations
starting with 7 of about 20 and three different %y distribu-
tions are shown in figure 30. It can be seen that the three
sets of calculations all converge to determine a single line
after the first few iterations. In order to promote insight
into the significance of the indicated variation of 7 from step
to step of the iteration process, the corresponding Mach
numbers for a 4-percent-thick section are also shown.
Comparison on this basis shows that the variation of Mach
number from step to step of the iteration process is very
small.
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Fraure 30.—Results of iteration calculations started with deliberately
poor assumption for 1y, shock wave at trailing edge.

An additional factor lending credence to the applicability
of the solutions for large 7 is provided by the phenomenon
of the Mach number freeze wherein the local Mach number
is invariant with changes in the free-stream Mach number
when the latter is near unity or, more precisely,

dM) —0
dMo Ma-l— (95)

It is known from the papers of Vincenti and Wagoner (ref.
14), Liepmann and Bryson (refs. 28 and 29), and others that
the corresponding approximate relation yielded by the small-
disturbance transonic theory is

(&),...=0 @

If the parameter k& involved in the definitions of ¢ is inde-
pendent of M, as is the case when % is taken to be as given
in equation (17), and if the local Mach number M is cal-
culated using equation (24), the above two relations are
completely equivalent. If % contains M,, however, as it
does in the preferred definition given in equation (7), dM/dMM,
only vanishes when M, as well as M, equals unity. If it is
assumed that the freeze extends over & finite range of Mach
numbers, the variation of % with 7 must obey the following
relation for large 7:

¢ =%,:,§1-=const. o7
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LEquation (97) has been used to compute a curve of iy
versus 7 under the assumption that the freeze extends at
least to as small a value of 7 as 10, which corresponds to a
Mach number of 0.978 for a 4-percent-thick section. These
lines, which all have the characteristic form

’Z—Lry'—"l

(%) ©8)

are also shown in figure 30. It can be seen that the lines so
determined are almost identical with those determined previ-
ously after the first few steps of the iteration process. This
comparison shows that the solutions obtained by the iteration
process possess the phenomenon of the Mach number freeze.
A further check was made by extrapolating the curves of uy
versus 7 to 7=40 with the aid of equation (98) and using
the values thus obtained as the initial values for an iteration
caleulation. It is found that these values nearly satisfy the
integral equation although the values of %y and 7 diminish
slightly from step to step during the iteration process, just
as at the smaller values of 7. The significance, in terms of
Mach number, of these changes is even smaller than at
lower Mach numbers. For example, the changes produced
in the values of % and 7 in the first step of the iteration
process correspond, for a 4-percent-thick section, to an
indiscernible change in the local Mach number and a change
in the free-stream Mach number of less than 0.001. On the
basis of these results, it appears proper to extrapolate the
curves of Uy versus 7 to values of 7 approaching infinity,
corresponding to & Mach number of unity, by using equa-
tion (98).

The results of the calculations for the range of 7 for which
the shock wave is at the trailing edge are summarized in
figures 31 and 32.

RESULTS
RESULTS IN TERMS OF REDUCED QUANTITIES

The calculations described in the preceding sections have
produced values for the velocity distributions at the surface
of thin circular-arc airfoils in flows having free-stream Mach
numbers ranging from zero to unity. These results are pre-
sented in graphical form in figures 22, 23, 26, 27, 31 and 32
in terms of the reduced quantities 77 and 7 defined in equations
(29) and (84) and repeated below.

= k Uk 1

St AT

where k represents the coefficient of the nonlinear term in
the approximate differential equation for ¢ (eq. (6)).

The results of a number of previous investigations of
transonic-flow theory have been presented in terms of the
quantities £, and £ defined in equations (87) and (88)

P PR
S 2 R D)

The relations between the two sets of quantities are given
» by equations (87) and (90)
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Figure 31.—Chordwise variation of @x for various 7, shock wave at
trailing edge.

Pressure distribution.—In many applications, the quantity
of prime interest is the pressure distribution rather than the
velocity or Mach number distribution. Because of the
simple relation between the pressure coefficient and the
perturbation velocity provided by equation (16), however,



236 REPORT 1217—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

10
¥/c
1.0
=
8 e
4 /A -9
///////
/ /’/3/ |8
/ / /’/‘/
6 // = /, 7
/ /’/A
/ / / / / //-/
g, 4 | 1/ //7// — ,1"4//'5
/ / ,a—/’
A )//// | — ﬁ/?ﬁ/"g
2 /y /‘IIX / A/A/M—A |
P
K . L)
1|
-{>——¢———T = ey 2
0 4 i ; -
; [~
7} M\\\‘E\\I
i —a
-2 J 1 l= T T T T
.80 .90 ] 85 96
(@ { M, for t/c =04
1
0 .8 : 1.6 2.4 _ 3.2 4.0 4,8
A(a.) 7<4.6

Fiaure 32.—Variation of @Iy with 7 for various values of £/c, shock wave at trailing edge.



THEORETICAL PREDICTION OF PRESSURE DISTRIBUTIONS ON NONLIFTING ATRFOILS AT HIGH SBUBSONIC SPBEDS 237

40
B P
10
rd
-
-
//
A
-
-~
i 9
/v -~
-7 g
~
30 < SR
/ -
- - 8
- ad ,/V/ —~
Ve P -
d i 17T
- - -
// ] - ﬂ// 7
s P Pl //’ -
e » —
——— Equation (98) 1 -1 -
20
Jy
10
0
-10
YT T T T N T 1
90 96 98 99 991
(b) M, for /c=04
205 10 20 30 40 50
7
(b) Large 7.

Fiaure 32.—Concluded.



238

it is a simple matter to determine the pressure distribution
once the velocity distribution is known; thus,

2 20-MpY. 2™ (T
= U, Uk T UhR <;2/a> (99)

The latter expression for C, suggests the introduction of a
reduced pressure coefficient C,, defined by

=-UR%0 _ o (;},O

——mﬁ; (100)

Equation (100) may be rewritten in terms of £, and ¢ as
follows:

Cp=—2(—%,)

The foregoing results have been used to caleulate C, for
numerous stations on the airfoil chord for various &, (or 7).
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The results so obtained are presented in figure 33 in the form
of chordwise pressure distributions (C, vs. #/c) for various
£,. This figure is presented in three parts: Part (2) contains
the results for suberitical Mach numbers, part (b) for slightly
supercritical Mach numbers for which the shock wave stands
on the airfoil surface, and part (¢) for still larger Mach num-
bers for which the shock wave is at the trailing edge.

The same results are presented in another manner in figure
34 in which the variation of C, with £, is plotted for various
stations z/c along the airfoil chord. This form of presenta-
tion is the counterpart, in terms of reduced quantities, of the
plots commonly found in many experimental investigations
showing the variation of pressure coefficient C, with frec-
stream Mach number M, at prescribed points on the surface
of wings and bodies. The corresponding curves given by

(b)

[0} 2 4 6 8 10
X/rc
(b) Shock wave forward of trailing edge.
Figure 33.—Continued.



THEORETICAL PREDICTION OF PRESSURE DISTRIBUTIONS ON NONLIFTING AIRFOILS AT HIGH SUBSONIC SPEEDS 239

linear theory are shown in figure 34 by dotted lines. These
curves are computed using the equation

-8 Lo\ 2
O’L_—ﬁ/-—_.—g[l_i_ 2 ¢ hlc—:T:]

obtained by direct substitution of equations (87) and (100)
into equation (85). It can be seen that the present results
and those of linear theory are in good agreement for values
of £, considerably less than zero. For &£, near to zero, how-
ever, the present results display a behavior completely dif-
ferent from that indicated by linear theory. This is as it
should be since it is well known that linear theory is totally
inadequate for the analysis of steady two-dimensional flows
about airfoils when the Mach number approaches unity, or,
in the present notation, when £, approaches zero.
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In order to provide further information regarding the sig-
nificance of the indicated variations of C, with £,, lines of
constant £ have also been included in figure 34. The local
velocities are subsonic if £ is negative and are supersonic if ¢
is positive. The Mach number freeze is indicated in figure
34 by the curve representing the variation of (, with &, at a
given station Z/c becoming parallel to a line of constant &.
It can be seen from this figure that such behavior occurs at all
stations on the airfoil for £, near zero.

Pressure drag.—The foregoing paragraphs have been
concerned with the determination of pressure distributions
on thin nonlifting circular-arc airfoil sections. Once these
results are known, it is a simple matter to determine the
section pressure drag coefficient ¢,

Cqg= d =% Op % d33
% Ul 0

(103)
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It is convenient at this point to introduce a reduced section
drag coefficient ¢; defined in terms of reduced quantities,
thus
a=2 [T dZa/7)
= L R

(109

It is clear from the definitions of C,, 7, Z, and Z that the
relation between ¢; and & is :

e
KoL N 6

T )
It should be remarked that some additional error is incurred
in the present calculations of drag because the pressures are
large and only poorly determined in the vicinity of the lead-
ing and trailing edges.

The variation of ¢z with £, has been computed and the
results are shown in figure 35. It can be seen that ¢ is
zero for £, less than —1.418 (corresponding to the eritical
Mach number). The rapid rise of ¢; as , is increased be-
yond the critical is associated with the rearward movement
of the shock and terminates abruptly when the shock reaches
the trailing edge at £,=—0.825. The drag coefficient con-
tinues to increase slowly with further increases of £, although
at a much reduced rate; and, finally, at & value of £, some-
what less than zero, ¢; becomes invariant with further changes
in £, This latter behavior is associated with the Mach

number freeze, thus,
0T\ T g
dgo EomD dE

(@)L,
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Since the Mach number freeze corresponds, in the approxi-
mate theory to (d%/df,);—0=0, equation (106) may be
simplified to the following form:

(@ .=.0=% fd_%ﬂ (E:%[(Z)m; (7)]

—4 [(Zu) rx: (Zu)z,x] 107

where (Z,)zz and (Z,)rs refer to the ordinates of the upper
surface at the leading edge and trailing edge, respectively.
Since both of these quantities are zero for the circular-arc
airfoils treated herein, it follows that

(@)=

The corresponding results for symmetrical double-wedge
profiles given in references 17, 13, and 14 by Trilling, Gudor-
ley and Yoshihara, and Vincenti and Wagoner, respectively,
are also shown in figure 35. Except for the value of ¢; at
£,=0, the two sets of results bear only a qualitative resem-
blance. In some cases, the reason for the differencoe is
clear; in other cases, the reasons are more obscurc. An
example of the former concerns the result that the drag of
the circular-arc section is zero for £, less than —1.408,
whereas the drag of the double-wedge section remains finito
for all £, 'The latter behavior results from the fact that the
critical Mach number is zero for the double-wedge section.
The reasons for the pronounced difference in shape betweon
the two curves for drag at subsonic speeds are not so clear.
The immediate explanation is that the shock wave moves
rearward across the chord of the circular-arc airfoil at a moro

(108

A, d(Z.[7) . (106) rapid rate than it does with the double-wedge airfoil. TFor
cJo \dé, tomo AT the circular-arc airfoil, the shock wave has moved to the
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Fiaure 35.—Theoretical drag results for circular are and double wedge sections.
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trailing edge when £, equals —0.825. This condition marks
the end of the rapid increase in drag. On the other hand,
Trilling’s results for the double-wedge airfoil indicate that
the shock wave does not reach the trailing edge until the
free-stream Mach number is unity, or £,=0. Whether this
difference is an actual property of the solutions of transonic

small-disturbance theory for these two profiles, or the result

of simplifying assumptions introduced in either the present
analysis or that of Trilling remains an unanswered question
at the present time.

RESULTS IN TERMS OF PHYSICAL QUANTITIES

The preceding section has summarized the results of the
present calculations of the pressure distribution and drag of
thin circular-arc airfoils in flows having free-stream Mach
numbers up to unity. These results are given in terms of
the reduced parameters C,, ¢z, and £,, which possess the ad-
vantage of condensing the information for all thickness ratios
onto a single curve, but the disadvantage of being some-
what complicated and unfamiliar. Consequently, it is the
aim of this section to re-cxpress these results in terms of the
more conventional quantities C,, ¢4, M,, and t/c.

Critical Mach number.—An airfoil property that is always
of interest is the critical Mach number, M,,. The variation
of the critical Mach number with thickness ratio can be

readily determined from the result that £.,=—1.408, thus,
1—M.2
b= = 1408 (109)

In this and in the remainder of the discussion, it is assumed
whenever the results of numerical computations are pre-
sented that % is as defined in equation (7) and that v is
equal to 1.4. TFigure 36 shows a plot of the results of these
calculations together with the corresponding results ob-
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Fraune 30.—Variation of eritical Mach number with thickness ratio
for circular-are airfoil.

tained using (a) linear theory and (b) thin-airfoil theory for
incompressible flow together with the Kdrm4n-Tsien rule to
account for the effect of compressibility. In both of the
latter calculations, the variation of C,_ with M, was deter-
mined using equation (23), as is customary in engineering
practice. It can be seen that the present calculations indi-
cate that the eritical Mach number is somewhat less than
given by either linear theory or by the Kérm#n-Tsien method.
This is in accord with the results found when the more exact
theories are applied to thin airfoils.

Pressure distribution.—The foregoing general results have
been applied to determine the pressure distributions on @
4-percent-thick circular-arc profile. These results are
presented in two alternative forms in figures 37 and 38. The
first of these shows the chordwise variation of G, for various
free-stream Mach numbers and illustrates the development
and rearward movement of the shock wave as the free-stream
Mach number increases beyond the critical. The second
form shows the variation of C, with M, for selected points
z/c on the airfoil chord. Three sets of auxiliary lines are
also shown; they are (a) lines of constant local Mach number
computed using equations (24) and (25) and (b) lines showing
the variation of C, with M, at selected points on the airfoil
chord computed using thin-airfoil theory for incompressible
flow together with the Kérmdn-Tsien rule. At Mach num-
bers less than the critical, it can be seen that the pressure
coefficient at a given point on the airfoil surface varies with
Mach number in & manner similar to that predicted by the
Kérmén-Tsien rule. It is also apparent, as was pointed out
earlier in connection with equations (22) and (23) and figure
2, that the value to be taken for the critical Mach number
differs slightly depending on whether the lines of constant
local Mach number are computed by the present approxi-
mation (eq. (24)) or by the exact isentropic relation (eq.
(25)). The irregular behavior of the pressures on the rear
half of the airfoil at supercritical Mach numbers is associated
with the passage of the shock wave. At Mach numbers near
unity, & completely different behavior is evidenced in which
the values of C, change with 1/, in such a manner that the
local Mach number remains essentially constant. Direct
calculation shows that the present theory implies the fol-
lowing approximate relation for dC,/d]M, at a free-stream
Mach number of unity.*

< >Mo-1 T4l 3(0:')31.,-1,

This may be compared with the exact relation given by
Vincenti and Wagoner in reference 14.

k=17 (110)

7+1
U,

C)stom 111
,Y_|_1 ,Y+1 ( p/Mo=1 ( )
11t mightbonomd here that numerous investigators have given the approximate relatfon
=) -5
Afem=1 7"'1 Uo

rather than that given in equation (110). As indicated by the anxiliary equations, the rela-
tons for dCp/d AL, at M, =1 follow directly from the particular definition of k. 1t Is Interesting
to observe that the expression for k given in equation (7) provides the more accurate relation
for (dCp/dM.) 3rew=1, 6ven though, asnoted in connection with the discussion of equation (96),
it provides the lesser accuracy In the determination of (dAL/dNL,) Afewm1.
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Fraurre 37.—Chordwise variation of Cj, for varous free-stream Mach numbers, 4-percent-thick circular-arc airfoil.

Pressure drag.—The variation of the section pressure drag
coefficient ¢; with A£, has also been calculated for the 4-
percent-thick circular-arc airfoil and the results are shown in
figure 39. The general features of this curve are very
similar to those discussed previously in connection with the
corresponding curve of figure 35 for the reduced quantities.
The major point of difference concerns the slope of the curve
at a Mach number of unity. Thus, the preceding discussion
has disclosed that de,/d%, is zero at a Mach number of unity;
whereas figure 39 shows that dc,/dM, is negative at A,=1.
Direct substitution gives the following value for this slope:

(ﬁa)uoﬂ:_% (cd)u"-l

Vincenti and Wagoner have shown in reference 14 that the
exact relation for flow about a closed airfoil is

(iﬁ)u,..l_ 742-1 (Caat,o1

The negative value of the slope given in equation (112)
arises from the fact that the quantity % which appears in all
the reduced parameters (cs, Cp, £, etc.) is a function of A,
If, as in many other papers, k is equated to (y+1)/U, and
is thus independent of A,, the value of the slope is zero,

thus
@m0 =

(112)

(113

(114)

COMPARISON WITH EXPERIMENT

Inasmuch as the results described in the preceding sections
were calculated after making numerous simplifications and
approximations, not the least of which is the assumption of
inviseid flow, it is desirable to include some comparisons
with experiment. This is particularly true for the present
problem since it is well known that phenomena outside the
scope of potential theory, such as separation, boundary-layer
shock-wave interaction, etc. are prominent features of tran-
sonic flow about airfoils. Since it is indicated in the pre-
ceding discussion that the present results are in general
accord with the proven Prandtl-Glauert and Xérmdn-Tsien
results in the suberitical Mach number range, the following
remarks will be confined to the supercritical range.

There are at least three papers available which present
results of detailed measurements of flow at high subsonic
velocities about symmetrical circular-arc airfoil sections,
namely, reference 33 by Liepmann, reference 34 by Liep-
mann, Ashkenas, and Cole, and reference 35 by Wood and
Gooderum. The first two of these are concerned primarily
with boundary-layer shock-wave interaction and contain
statements casting doubt on the accuracy of the values in-
dicated for the free-stream Mach number, & quantity of only
secondary interest in their investigations. In general, it
appears that values given for M, in these two papers are
somewhat too great. The more recent investigation of
Wood and Gooderum appears to be better in this particular
and possesses the advantage of being made with an inter-
ferometer so that knowledge is gained about the entire flow
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TFrqure 38.—Variation of C, with M, for various values of z/c, 4-percent
thick circular-arc airfoil.

field. A disadvantage, however, is that the tests were made
using a 12-percent-thick model, which severely strains the
assumptions of transonic small-disturbance theory. Never-
theless, the comparisons will be made with the data of
1eference 35.

The studies of Liepmann (ref. 33), Ackeret, Feldmann, a.nd
Rott (ref. 36), and others have shown that the bounda.ry
layer can have a profound influence on a transonic flow field.
This immediately raises a question regarding the usefulness
of a potential-flow theory, such as the present, which dis-
regards the boundary layer completely. In order to illustrate
better the nature of these effects, two interferograms of the
flow about 12-percent-thick circular-arc airfoils are repro-
duced from reference 35 and shown in figure 40. The free-
stream Mach number is 0.88, and the Reynolds number based
on the chord is 600,000 for both photographs. The condi-
tions for the two flows differ in that the boundary layer is
laminar in the flow pictured on the left and turbulent in
that pictured on the right. The interferogram for the
laminar case shows that the shock waves are of the A type
and that the flow separates near the midchord station.
When the boundary layer is turbulent, however, it may be
seen that the shock wave is of the simple single wave type,

024
/
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/ /
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Mo
Figure 39.—Variation of ¢4 with M, 4-percent-thick circular-are

airfoil.

and that the extent of the region of separated flow is greatly
diminished. From this pair of photographs, it is apparent
that two of the simplifying assumptions introduced in the
course of the present analysis (i. e., (2) no flow separation
occurs and (b) the shock wave is a single normal wave) are
in better accord with the physical phenomenon if the bound-
ary layer is turbulent ahead of the shock wave than if it is
laminar. Figure 41 shows experimental pressure distribu-
tions determined from the two interferograms of figure 40
together with the corresponding theoretical results. Because
of difficulties in interpreting the interferograms, the experi-
mental pressure distributions presented in reference 35 and
reproduced in figure 41 are terminated at the separation
point. It can be sean that the theoretical results are in
substantial agreement with the experimental data available
for the portion of the airfoil forward of the separation point.
Although the experimental and theoretical pressure distri-
butions matched equally well for all the test data of reference
35, the degree of correspondence must be attributed, in part,
to a fortunate cancellation of errors since individual com-
ponents involved in the perturbation analysis (e. g., the
relation between w and dZ/dz, C, and the perturbation
velocity components, etc.) contain appreciable errors when
applied to such a thick airfoil. Although the corresponding
experimental values are not available for the pressures at
stations aft of the separation point, it is presumed from other
experimental data that the pressures reach their maximum
negative value in the vicinity of the separation point and
return toward the free-stream value at stations farther aft
on the airfoil, rather than varying in the manner indicated
by the calculated results.

Before leaving this topie, the following remarks should
be made concerning expenmental factors which may affect
these conclusions. The first is that the authors of reference
35 do not consider the datae for the turbulent boundary
layer to be as reliable as that for the laminar boundary



(a) Laminar boundary layer.
(b) Turbulent boundary layer.

Fiqure 40.—Interferograms of flow about 12-percent-thick circular-arc
airfoil at 2 Mach number of 0.88 and a Reynolds number of 600,000.
From reference 35.

layer. The reason for this is that the method used to make
the boundary layer turbulent (the upper half of the airfoil
was mounted on a flat plate which extended one chord
length forward of the leading edge of the airfoil) produced
such a thick boundary layer that difficulties were encountered
in correctly extrapolating the lines of the interferograms to
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the airfoil surface® The differences in boundary-layer
thickness are clearly evident in the interferograms shown
in figure 40. The second stems from the fact that the tests
were conducted with a 12-percent-thick airfoil. Compari-
sons of theory and experiment for such thick airfoils not
only strain the small-disturbance assumptions of the theory
but also emphasize unduly such features of the flow as the
curvature of the shock wave and boundary-layer separation
which are disregarded completely in the theory. The third
is concerned with the fact that results of a recent flight
investigation by Harrin (ref. 37) have shown that, at Rey-
nolds numbers of the order of 20,000,000, there is very
little difference in pressure distribution with laminar and
turbulent boundary layers. In particular, it is found that
the A type shock and large region of separated flow commonly
associated with laminar boundary layers do not occur. If
this result is substantiated by further experiments, it will
be of particular significance in work such as the present
where some assumption has to be made about the nature
of the shock system, and the assumption that the shock
wave is a single wave leads to the greatest simplification.

The principal discrepancy between celculated pressure
distributions and those measured with a turbulent boundary
layer stems from the fact that the shock wave meets the
airfoil surface at a station farther forward than calculated.
The interferograms of figure 40 show that a substantial
portion of the forward shift is due to a pronounced curvature
of the shock wave near the airfoil. This suggests a compari-
son of the calculated shock positions with not only the
positions observed at the airfoil surface but also at some
distance, say a half chord length, away from the airfoil.
The results of such a comparison with the data for turbulent
boundary layers given in reference 35 are shown in figure 42.
It can be seen that the calculated shock positions vary with
M, in a manner which parallels the experimental results at
2[fc=0.5 but not those at the airfoil surface. It is almost
certain that the details of this phenomenon are greatly
influenced by separation and by interaction of the shock
wave and boundary layer, and are, hence, beyond the reach
of separation-free potential theory for transonic {flow.
Since the pressure gradients and shock strength increase with
airfoil thickness, it might be presumed that these effects would
be greater for thick airfoils than for thin airfoils. An indi-
cation of such a trend is furnished by the pressure-distribution
data of Gothert (ref. 38) for NACA 0006, 0009, 0012, 0015,
and 0018 airfoils. Figure 43 shows a plot of the variation
with £, of the shock position at the surface of each of these
airfoils. If the shock positions were changing in accord
with the similarity rules of transonic flow theory, these
results would all fall on a single curve. It can be seen,
however, that this is not the case and that the shock moves
rearward across the chord at & slower rate for the thick
airfoils than for the thin ones. It appears, therefore, that at
best, the calculated shock positions will only agree with those
found experimentally for very thin airfoils.

s Results are algo given in reference 85, although not for a Mach number of 0.88, in which
the boundary layer is made turbulent by a wire stretched across the test gostlon one chord
length ahead of the leading edge. When thess results are plotted In the form shown in figuro

39, they fall about half way between the calculated results and those obtained with the halt
model mounted on a plate.
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Fraure 42.—Variation of shock position with Mach number for 12-
percent-thick circular-are airfoil.

(b) Turbulent boundary layer.
Fraure 41,—Comparison of theoretical and experimental chordwise pressure distributions for a 12-percent-thick circular-arc airfoil at a Mach
number of 0.88. Experimental data from reference 35 for a Reynolds number of 600,000.
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It is apparent that changes in the shock position will be
accompanied, in many cases, by substantial changes in the
pressure drag of the airfoil. In particular, the forward shift
of the shock noted for the thick airfoils will diminish the
region of high negative pressures. on the rear of the airfoil,
thereby decreasing the drag. These effects will, of course,
be zero until the critical Mach number is exceeded, will
increase as the shock moves across the airfoil, and may
diminish somewhat again as sonic free-stream velocity is
approached, since the actual, as well as calculated, shock
position then approaches the trailing edge. These effects
would probably alter the curve for the pressure drag of a
thick airfoil so that it would appear somewhat like that
illustrated in figure 44.

F1aure 44.—Presumed drag results for a thick airfoil.

CONCLUDING REMARKS‘

The foregoing results are encouraging in that they show
that the introduction of a small number of rough, although
reasonable, assumptions leads to a relatively simple method
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for the calculation of pressure distributions on thin circular-
arc airfoils at all Mach numbers up to unity. Perhaps the
most important aspect of the present work is the recognition
of the quadratic noture of the integral equation and the
retention of this feature in the iteration solution. With the
knowledge that acceptable results can be obtained without
excessive effort, it appears worthwhile to re-examine the
approximate solution of the equations with an eye toward
improvement, or elimination, of the simplifying assumptions.
Probably one of the weakest elements of the present method
is the velocity-distribution function introduced in equation
(63). This particular function is used to determine the
entire flow field but, actually, only insures that the velocity
and velocity gradient have the correct value at the airfoil
surface and that the velocity diminishes toward zero at
infinity as 1/z®. As can be seen by comparing the experi-
mental and calculated results shown in figure 45, this func-
tion succeeds reasonably well for circular-arc airfoils. On
the other hand, such a simple function cannot be expected
to give good results for all airfoils. For instance, the present
velocity-distribution function cannot be expected to provide
good results for airfoils having flat surfaces over a substantial
part of the chord (e. g., wedge airfoils, etc.) since it indicates
no attenuation with distance above an element of the airfoil
where the radius of curvature of the surface is infinite, Gull-
strand (ref. 22) has proposed a different velocity-distribution
function which satisfies one more known requirement, but
it has not been established as yet whether or not it is suffi~
ciently general to cover all interesting cases.

AAES ABRONAUTICAL LLABORATORY
NatioNay Apvisory COMMITTEE FOR AERONAUTICS
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Freure 45.—Comparison of theoretical and experimental lines of constant Cj around a 12-percent-thick circular-arc airfoil at s Mach number of
0.88. Experimental data from reference 35 for Reynolds number of 600,000. Turbulent boundary layer.
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APPENDIX A

PRINCIPAL SYMBOLS

speed of sound

speed of sound in the free stream

critical speed of sound

function defined in equations (63) and (64) -

Y
0U2

pressure coefficient,

Uk
(t /0)2/3 017
chord

section pressure drag coefficient,

% Uje

(Ao

@

pressure drag

function defined in equation (67)

function defined in equation (71)

function defined in equations (72) and (73)

function defined in equations (76) and (77)

function defined in equations (57) and (58)

coefficient of nonlinear term of differential equation
for ¢ (See eqgs. (7), (17), (18), and (21).)

217«1,‘—1

width of element used in approximating the
chordwise velocity distribution

local Mach number

critical Mach number

free-stream Mach number

inward normal to surface enclosing B

arbitrary point z, y, 2

static pressure

free-stream static pressure

region of integration

VE—B+ G0

VE—E+G—7r+ @~

surface of shock wave

wing semispan

maximum thickness of profile

free-stream velocity

perturbation velocity components parallel to
z, ¥, 2 axes, respectively’

k
FQL

v

w

R TR

4138672—87—17

SIFEEET RIS
Il

%, 5,

M

B
=
w

B NN Rl s

|l 6 & A

<

Cartesian velocity components on the two sides of

a shock wave, with % being parallel to the flow

. direction ahead of the shock

£z '

b

Cartesian coordinates where z extends in the di-
rection of the free-stream velocity

z ,

By

Bz

ordinates of wing profiles

kU, .

g

1—-Mj2

ratio of specific heats, for air y=1.4

difference between values of quantity on the upper
and lower sides of the zy plane

variables of integration corresponding to z, 7, Z

1=
(U k(fe))*R

__1-Af
[Ukt/o))?

free-stream density of air

surface enclosing volume B

kU, t

B c
velocity potential
perturbation velocity potential
k

1
rs DE’
Subscripts

values ahead of shock wave

values behind shock wave

conditions associated w1t.h the critical Mach
number

values given by linear theory

leading edge

values on the lower surface oj wing or wake

values at M,=1

values at arbitrary point P

values along shock wave |

trailing edge A

values on the upper surface of wing or wake

values at the wing surface

A
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APPENDIX ‘B

DISCUSSION OF CERTAIN PROPERTIES OF THE QUADRATIC ITERATION METHOD

INTRODUCTION

"The present results are obtained using an iteration process
which differs from that of previous workers in that the
quadratic nature of the integral equation is recognized and
retained throughout the analysis. This appendix is con-
cerned with an. investigation of certain properties of the
two methods and a discussion of the applicability of each
method to transonic-flow problems. Certain other problems
will be avoided by confining attention to symmetrical non-
lifting wings with sufficiently smooth entries at leading and
trailing edges that there are no stagnation points.” Methods
of handling stagnation points are discussed in references 39
and 40.

The fundamental relations for the following discussion,
equations (41) and (43), can be written in the following more
abbreviated form

u=uL—I1 - (B1)
73
T ®2)

where I, and I refer to the integrals over B and S in equa-
tions (41) and (43), respectively, and wu;, is the linear-theory
solution given by equation (42). -As is evident from the
derivation in the text, equations (B1) and (B2) are totally
equivalent since the latter is derived from the former by
partial integration such that

Y
Il—é—% . B3)

Since methods for inverting, or solving, nonlinear integral
equations such as equations (B1) and (B2) are not known,
the present analysis, in common with many previous analy-
ses, seeks an approximate solution by iteration. These
methods proceed, in general,” by substituting a known
function for u into the integrals, integrating, and solving the
resulting algebraic equation for a new approximation for ,
which is in-turn substituted into the integrals, etc. The
procedure employed in the present analysis differs from that
traditionally employed in that it is based on equation (B2)
rather than equation (B1). The most obvious difference
between the two procedures is that the algebraic equation to
solve for the new w is linear in the traditional analysis and
quadratic in the present analysis. - Although solutions of
equations (B1) and (B2) must actually be identical, it is
shown in equations (91) through (94) that this is not always
the case for the results indicated by a partially completed
iteration calculation. Since the linear iteration method. is
accepted universally for purely subsonic flow, and by some
for mixed flows, it is important that we examine the relation
between the results of the two procedures in greater detail.

248

SHOCK-FREE FLOW

Shock-free flow will be considered first.
and I, are then simply

I‘—_fiﬂ s agz ’>d5 & &f
2@ ana]

and will be designated I;(a*) and L2(%?) to call attention to

The integrals I,

(B4)

(B5)

the fact that they involve the square of 7. 'The linear-theory
solution %z has the form
u=7a(@, Y, Z)=a7r (B6)

where ¢, is 2 known function. Both the linear and quadratic
iteration procedures can be started by letting #=0 and desig-
nating this approximation by .

The results for successive iteration steps using the linear
iteration method are determined by solving

U=z~ 11 (Ua*) @B7)
In this way.we obtain .
T=0
UW=Up=07T
=4 — I, () =u—7L(0) =7+ 57
U=y~ I, (") = a,7+ a7 + ™+ 0(7%)
=33 0,77 -0 39

where a,=a.(, ¥, z) are functions of the wing geometry,
and ultimately therefore of a;. This procedure has the
interesting property that one and only one additional term
in the power series expansion for u is determined in its final
form with each iteration step. Thatis

a:='I—iu—‘l""an;u'}' OGﬂ-H)

Note that a single expression is obtained for all Mach num-
bers and thickness ratios, and that the magnitudes of these
parameters are reflected solely in the value for 7. The
principal question concerns the range of convergence of the
series. It is evident that the series cannot continue to con-
verge as M, approaches unity because 7 approaches infinity,
but the precise bound on the radius of convergence is difficult
to establish at this point.

(B9)
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The results for successive iteration steps using the quad-
ratic method are determined by solving

a3
u::+1“’zi"‘.?‘—'-l'l=’l_/:1r."'!2—(:‘?17”ﬁ (B10)
Thus o
o 17"+1=1i-\}1—217L+I2(17,2)

) =14+/1—X, (B11)

where
Xn=2ﬁL'—'I2@n2)

and

X1

if Uynyy i8 to remain real. The minus sign is associated with
local velocities that are subsonic and the plus sign with those
that are supersonic. This result can be made more nearly
comparable with the power series representation provided
by the linear iteration method by expanding the radical of
equation (B11) under the assumption that }x.|<1, whereby

we obtain
1/1\ _,
3 (Z) Xa

LY (3Y s L(L (ﬁ)(é) ‘“
2(4)(6)"" 2(4) 6/\8/*"

Consider first purely subsonic flow. Then successive
iterations yield the following results

- 1
Tl 1= %,

. ] B12)

Up==0

'TL1=17L+0('1-LL7)_G'1?+0(—2) -

Tyl — Lu'l?) L 0@ D) = — L@u’)"l“@(-rls)
=7+ a7 +0(7%)

= ilaﬁuroe"“) (B13)

where the a, have the same values as in equation (BS).
This series and that given by equation (B8) are the same
since they can be made to agree to any arbitrary number of
terms. Thus the two methods lead to the same result for
purely subsonic flow. Whereas there is some doubt about
the range of convergence of equation (B8), it is clear that
equation (B13) only applies to purely subsonic flow. = This
is evident, first of all, from the use of the minus sign in equa-
tion (B11). Moreover, since the series only converges for
|xal <1, the largest value for % which can be represented by
equation (B13) is unity. Since u equals unity when the local
velocity is sonie, this result can be interpreted as indicating
that equation (B8) converges for purely subsonic flow, but
diverges for mixed flow.

There also exists a range in which the expression given in
equation (B12) applies using the plus sign for certain regions
of the flow field. The resulting series expansion for %, how-
ever, does not lead to that given by equation (B8) or (B13),
inasmuch. as the first term is independent of 7.

FLOW WITH SHOCK WAVES

Although many of the general notions desonbed for shock-
free flow carry over into the analysis of transonig, flovs with
shock waves, certain changes must be introduced:- It is
clear, for instance, that the linear iteration method--cannot
be used with the starting % distribution taken as zero or %z,
because then equation (B8) would be reproduced: and no
discontinuities or shock waves would ever appear. On the
other hand, it might seem reasonable to suppose that a
successful iteration calculation could be accomplished using
a starting 7 distribution containing a shock wave and esti-
mated to be close to the correct solution. This is, in fact,
what is done in the present analysis, but using the quadratic,
rather than linear, iteration method. Although, as shown
in the preceding section, there is no-essential difference be-
tween the results of the two iteration methods in the sub-
critical range, the quadratic method emerges as definitely
superior when the free-stream Mach number approaches
unity. Its decisive advantage lies in the fact that small
errors in the estimated ¥ distribution lead only to finite errors
in the calculated % as M, approaches unity, whereas infinite
errors can result from the calculations performed by the
linear iteration method. The means by which small errors
can be m&gniﬁed in the linear iteration process can be seen
by examining equation (B1) together with the deﬁmtlon of
% and ;.

Y S
. =g T=mu

Thus equation (B1) can be rewritten as follows:

'u,='u,_-,—Il
where .
Tl=% 1,

Now, as M, approaches unity, u remains finite but u, ap-
proaches.-infinity. The largest values of .y, are-attained on
the airfoil surface where u; approaches infinity as 1/8 in
two-dimensional flow and In g in three-dimensional flow.
This means, in the linear iteration method, that the desired -
solution % must be determined from the small difference be-
tween two large numbers. Since I; is only evaluated ap-
proximately in an iteration method by substituting a function
for 4 which differs from the exact function by a finite amount,
it is apparent that very large or infinite errors may result as
M, approaches unity. On the other hand, equation (B2),
which is used in the quadratic iteration method, can be
rewritten as follows:

g, _L

g: U= Uy
where
.Ta=% Ig

Now in this case the term containing u;, becomes indefinitely
small compared with 4* as the Mach number approaches
unity, and only finite errors result when an approximation
is substituted for v in I;. :
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